-
Notifications
You must be signed in to change notification settings - Fork 10
/
remhos_fct.cpp
983 lines (851 loc) · 30.5 KB
/
remhos_fct.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
// Copyright (c) 2017, Lawrence Livermore National Security, LLC. Produced at
// the Lawrence Livermore National Laboratory. LLNL-CODE-734707. All Rights
// reserved. See files LICENSE and NOTICE for details.
//
// This file is part of CEED, a collection of benchmarks, miniapps, software
// libraries and APIs for efficient high-order finite element and spectral
// element discretizations for exascale applications. For more information and
// source code availability see http://github.com/ceed.
//
// The CEED research is supported by the Exascale Computing Project 17-SC-20-SC,
// a collaborative effort of two U.S. Department of Energy organizations (Office
// of Science and the National Nuclear Security Administration) responsible for
// the planning and preparation of a capable exascale ecosystem, including
// software, applications, hardware, advanced system engineering and early
// testbed platforms, in support of the nation's exascale computing imperative.
#include "remhos_fct.hpp"
#include "remhos_tools.hpp"
#include "remhos_sync.hpp"
using namespace std;
namespace mfem
{
void FCTSolver::CalcCompatibleLOProduct(const ParGridFunction &us,
const Vector &m, const Vector &d_us_HO,
Vector &s_min, Vector &s_max,
const Vector &u_new,
const Array<bool> &active_el,
const Array<bool> &active_dofs,
Vector &d_us_LO_new)
{
const double eps = 1e-12;
int dof_id;
// Compute a compatible low-order solution.
const int NE = us.ParFESpace()->GetNE();
const int ndofs = us.Size() / NE;
Vector s_min_loc, s_max_loc;
d_us_LO_new = 0.0;
for (int k = 0; k < NE; k++)
{
if (active_el[k] == false) { continue; }
double mass_us = 0.0, mass_u = 0.0;
for (int j = 0; j < ndofs; j++)
{
const double us_new_HO = us(k*ndofs + j) + dt * d_us_HO(k*ndofs + j);
mass_us += us_new_HO * m(k*ndofs + j);
mass_u += u_new(k*ndofs + j) * m(k*ndofs + j);
}
double s_avg = mass_us / mass_u;
// Min and max of s using the full stencil of active dofs.
s_min_loc.SetDataAndSize(s_min.GetData() + k*ndofs, ndofs);
s_max_loc.SetDataAndSize(s_max.GetData() + k*ndofs, ndofs);
double smin = numeric_limits<double>::infinity(),
smax = -numeric_limits<double>::infinity();
for (int j = 0; j < ndofs; j++)
{
if (active_dofs[k*ndofs + j] == false) { continue; }
smin = min(smin, s_min_loc(j));
smax = max(smax, s_max_loc(j));
}
// Fix inconsistencies due to round-off and the usage of local bounds.
for (int j = 0; j < ndofs; j++)
{
if (active_dofs[k*ndofs + j] == false) { continue; }
// Check if there's a violation, s_avg < s_min, due to round-offs that
// are inflated by the division of a small number (the 2nd check means
// s_avg = mass_us / mass_u > s_min up to round-off in mass_us).
if (s_avg < smin &&
mass_us + eps > smin * mass_u) { s_avg = smin; }
// As above for the s_max.
if (s_avg > smax &&
mass_us - eps < smax * mass_u) { s_avg = smax; }
if (verify_bounds)
{
// Check if s_avg = mass_us / mass_u is within the bounds of the
// full stencil of active dofs.
if (mass_us + eps < smin * mass_u ||
mass_us - eps > smax * mass_u ||
s_avg + eps < smin ||
s_avg - eps > smax)
{
std::cout << "---\ns_avg element bounds: "
<< smin << " " << s_avg << " " << smax << std::endl;
std::cout << "Element " << k << std::endl;
std::cout << "Masses " << mass_us << " " << mass_u << std::endl;
PrintCellValues(k, NE, u_new, "u_loc: ");
MFEM_ABORT("s_avg is not in the full stencil bounds!");
}
}
// When s_avg is not in the local bounds for some dof (it should be
// within the full stencil of active dofs), reset the bounds to s_avg.
if (s_avg + eps < s_min_loc(j)) { s_min_loc(j) = s_avg; }
if (s_avg - eps > s_max_loc(j)) { s_max_loc(j) = s_avg; }
}
// Take into account the compatible low-order solution.
for (int j = 0; j < ndofs; j++)
{
// In inactive dofs we get u_new*s_avg ~ 0, which should be fine.
// Compatible LO solution.
dof_id = k*ndofs + j;
d_us_LO_new(dof_id) = (u_new(dof_id) * s_avg - us(dof_id)) / dt;
}
}
}
void FCTSolver::ScaleProductBounds(const Vector &s_min, const Vector &s_max,
const Vector &u_new,
const Array<bool> &active_el,
const Array<bool> &active_dofs,
Vector &us_min, Vector &us_max)
{
const int NE = pfes.GetNE();
const int ndofs = u_new.Size() / NE;
int dof_id;
us_min = 0.0;
us_max = 0.0;
for (int k = 0; k < NE; k++)
{
if (active_el[k] == false) { continue; }
// Rescale the bounds (s_min, s_max) -> (u*s_min, u*s_max).
for (int j = 0; j < ndofs; j++)
{
dof_id = k*ndofs + j;
// For inactive dofs, s_min and s_max are undefined (inf values).
if (active_dofs[dof_id] == false)
{
us_min(dof_id) = 0.0;
us_max(dof_id) = 0.0;
continue;
}
us_min(dof_id) = s_min(dof_id) * u_new(dof_id);
us_max(dof_id) = s_max(dof_id) * u_new(dof_id);
}
}
}
void FluxBasedFCT::CalcFCTSolution(const ParGridFunction &u, const Vector &m,
const Vector &du_ho, const Vector &du_lo,
const Vector &u_min, const Vector &u_max,
Vector &du) const
{
MFEM_VERIFY(smth_indicator == NULL, "TODO: update SI bounds.");
// Construct the flux matrix (it gets recomputed every time).
ComputeFluxMatrix(u, du_ho, flux_ij);
// Iterated FCT correction.
Vector du_lo_fct(du_lo);
for (int fct_iter = 0; fct_iter < iter_cnt; fct_iter++)
{
// Compute sums of incoming/outgoing fluxes at each DOF.
AddFluxesAtDofs(flux_ij, gp, gm);
// Compute the flux coefficients (aka alphas) into gp and gm.
ComputeFluxCoefficients(u, du_lo_fct, m, u_min, u_max, gp, gm);
// Apply the alpha coefficients to get the final solution.
// Update the flux matrix for iterative FCT (when iter_cnt > 1).
UpdateSolutionAndFlux(du_lo_fct, m, gp, gm, flux_ij, du);
du_lo_fct = du;
}
}
void FluxBasedFCT::CalcFCTProduct(const ParGridFunction &us, const Vector &m,
const Vector &d_us_HO, const Vector &d_us_LO,
Vector &s_min, Vector &s_max,
const Vector &u_new,
const Array<bool> &active_el,
const Array<bool> &active_dofs, Vector &d_us)
{
// Construct the flux matrix (it gets recomputed every time).
ComputeFluxMatrix(us, d_us_HO, flux_ij);
us.HostRead();
d_us_LO.HostRead();
s_min.HostReadWrite();
s_max.HostReadWrite();
u_new.HostRead();
active_el.HostRead();
active_dofs.HostRead();
// Compute a compatible low-order solution.
Vector dus_lo_fct(us.Size()), us_min(us.Size()), us_max(us.Size());
CalcCompatibleLOProduct(us, m, d_us_HO, s_min, s_max, u_new,
active_el, active_dofs, dus_lo_fct);
ScaleProductBounds(s_min, s_max, u_new, active_el, active_dofs,
us_min, us_max);
// Update the flux matrix to a product-compatible version.
// Compute a compatible low-order solution.
const int NE = us.ParFESpace()->GetNE();
const int ndofs = us.Size() / NE;
Vector flux_el(ndofs), beta(ndofs);
DenseMatrix fij_el(ndofs);
fij_el = 0.0;
Array<int> dofs;
int dof_id;
for (int k = 0; k < NE; k++)
{
if (active_el[k] == false) { continue; }
// Take into account the compatible low-order solution.
for (int j = 0; j < ndofs; j++)
{
// In inactive dofs we get u_new*s_avg ~ 0, which should be fine.
dof_id = k*ndofs + j;
flux_el(j) = m(dof_id) * dt * (d_us_LO(dof_id) - dus_lo_fct(dof_id));
beta(j) = m(dof_id) * u_new(dof_id);
}
// Make the betas sum to 1, add the new compatible fluxes.
beta /= beta.Sum();
for (int j = 1; j < ndofs; j++)
{
for (int i = 0; i < j; i++)
{
fij_el(i, j) = beta(j) * flux_el(i) - beta(i) * flux_el(j);
}
}
pfes.GetElementDofs(k, dofs);
flux_ij.AddSubMatrix(dofs, dofs, fij_el);
}
// Iterated FCT correction.
// To get the LO compatible product solution (with s_avg), just do
// d_us = dus_lo_fct instead of the loop below.
for (int fct_iter = 0; fct_iter < iter_cnt; fct_iter++)
{
// Compute sums of incoming fluxes at each DOF.
AddFluxesAtDofs(flux_ij, gp, gm);
// Compute the flux coefficients (aka alphas) into gp and gm.
ComputeFluxCoefficients(us, dus_lo_fct, m, us_min, us_max, gp, gm);
// Apply the alpha coefficients to get the final solution.
// Update the fluxes for iterative FCT (when iter_cnt > 1).
UpdateSolutionAndFlux(dus_lo_fct, m, gp, gm, flux_ij, d_us);
ZeroOutEmptyDofs(active_el, active_dofs, d_us);
dus_lo_fct = d_us;
}
if (verify_bounds)
{
// Check the bounds of the final solution.
const double eps = 1e-12;
Vector us_new(d_us.Size());
add(1.0, us, dt, d_us, us_new);
for (int k = 0; k < NE; k++)
{
if (active_el[k] == false) { continue; }
for (int j = 0; j < ndofs; j++)
{
dof_id = k*ndofs + j;
if (active_dofs[dof_id] == false) { continue; }
if (us_new(dof_id) + eps < us_min(dof_id) ||
us_new(dof_id) - eps > us_max(dof_id))
{
std::cout << "Final us " << j << " " << k << " "
<< us_min(dof_id) << " "
<< us_new(dof_id) << " "
<< us_max(dof_id) << std::endl;
std::cout << "---\n";
MFEM_ABORT("us not in bounds after FCT.");
}
}
}
}
}
void FluxBasedFCT::ComputeFluxMatrix(const ParGridFunction &u,
const Vector &du_ho,
SparseMatrix &flux_mat) const
{
const int s = u.Size();
double *flux_data = flux_mat.HostReadWriteData();
flux_mat.HostReadI(); flux_mat.HostReadJ();
const int *K_I = K.HostReadI(), *K_J = K.HostReadJ();
const double *K_data = K.HostReadData();
const double *u_np = u.FaceNbrData().HostRead();
u.HostRead();
du_ho.HostRead();
for (int i = 0; i < s; i++)
{
for (int k = K_I[i]; k < K_I[i + 1]; k++)
{
int j = K_J[k];
if (j <= i) { continue; }
double kij = K_data[k], kji = K_data[K_smap[k]];
double dij = max(max(0.0, -kij), -kji);
double u_ij = (j < s) ? u(i) - u(j)
: u(i) - u_np[j - s];
flux_data[k] = dt * dij * u_ij;
}
}
const int NE = pfes.GetMesh()->GetNE();
const int ndof = s / NE;
Array<int> dofs;
DenseMatrix Mz(ndof);
Vector du_z(ndof);
for (int k = 0; k < NE; k++)
{
pfes.GetElementDofs(k, dofs);
M.GetSubMatrix(dofs, dofs, Mz);
du_ho.GetSubVector(dofs, du_z);
for (int i = 0; i < ndof; i++)
{
int j = 0;
for (; j <= i; j++) { Mz(i, j) = 0.0; }
for (; j < ndof; j++) { Mz(i, j) *= dt * (du_z(i) - du_z(j)); }
}
flux_mat.AddSubMatrix(dofs, dofs, Mz, 0);
}
}
// Compute sums of incoming fluxes for every DOF.
void FluxBasedFCT::AddFluxesAtDofs(const SparseMatrix &flux_mat,
Vector &flux_pos, Vector &flux_neg) const
{
const int s = flux_pos.Size();
const double *flux_data = flux_mat.GetData();
const int *flux_I = flux_mat.GetI(), *flux_J = flux_mat.GetJ();
flux_pos = 0.0;
flux_neg = 0.0;
flux_pos.HostReadWrite();
flux_neg.HostReadWrite();
for (int i = 0; i < s; i++)
{
for (int k = flux_I[i]; k < flux_I[i + 1]; k++)
{
int j = flux_J[k];
// The skipped fluxes will be added when the outer loop is at j as
// the flux matrix is always symmetric.
if (j <= i) { continue; }
const double f_ij = flux_data[k];
if (f_ij >= 0.0)
{
flux_pos(i) += f_ij;
// Modify j if it's on the same MPI task (prevents x2 counting).
if (j < s) { flux_neg(j) -= f_ij; }
}
else
{
flux_neg(i) += f_ij;
// Modify j if it's on the same MPI task (prevents x2 counting).
if (j < s) { flux_pos(j) -= f_ij; }
}
}
}
}
// Compute the so-called alpha coefficients that scale the fluxes into gp, gm.
void FluxBasedFCT::
ComputeFluxCoefficients(const Vector &u, const Vector &du_lo, const Vector &m,
const Vector &u_min, const Vector &u_max,
Vector &coeff_pos, Vector &coeff_neg) const
{
const int s = u.Size();
for (int i = 0; i < s; i++)
{
const double u_lo = u(i) + dt * du_lo(i);
const double max_pos_diff = max((u_max(i) - u_lo) * m(i), 0.0),
min_neg_diff = min((u_min(i) - u_lo) * m(i), 0.0);
const double sum_pos = coeff_pos(i), sum_neg = coeff_neg(i);
coeff_pos(i) = (sum_pos > max_pos_diff) ? max_pos_diff / sum_pos : 1.0;
coeff_neg(i) = (sum_neg < min_neg_diff) ? min_neg_diff / sum_neg : 1.0;
}
}
void FluxBasedFCT::
UpdateSolutionAndFlux(const Vector &du_lo, const Vector &m,
ParGridFunction &coeff_pos, ParGridFunction &coeff_neg,
SparseMatrix &flux_mat, Vector &du) const
{
Vector &a_pos_n = coeff_pos.FaceNbrData();
Vector &a_neg_n = coeff_neg.FaceNbrData();
coeff_pos.ExchangeFaceNbrData();
coeff_neg.ExchangeFaceNbrData();
du = du_lo;
coeff_pos.HostReadWrite();
coeff_neg.HostReadWrite();
du.HostReadWrite();
double *flux_data = flux_mat.HostReadWriteData();
const int *flux_I = flux_mat.HostReadI(), *flux_J = flux_mat.HostReadJ();
const int s = du.Size();
for (int i = 0; i < s; i++)
{
for (int k = flux_I[i]; k < flux_I[i + 1]; k++)
{
int j = flux_J[k];
if (j <= i) { continue; }
double fij = flux_data[k], a_ij;
if (fij >= 0.0)
{
a_ij = (j < s) ? min(coeff_pos(i), coeff_neg(j))
: min(coeff_pos(i), a_neg_n(j - s));
}
else
{
a_ij = (j < s) ? min(coeff_neg(i), coeff_pos(j))
: min(coeff_neg(i), a_pos_n(j - s));
}
fij *= a_ij;
du(i) += fij / m(i) / dt;
if (j < s) { du(j) -= fij / m(j) / dt; }
flux_data[k] -= fij;
}
}
}
void ClipScaleSolver::CalcFCTSolution(const ParGridFunction &u, const Vector &m,
const Vector &du_ho, const Vector &du_lo,
const Vector &u_min, const Vector &u_max,
Vector &du) const
{
const int NE = pfes.GetMesh()->GetNE();
const int nd = pfes.GetFE(0)->GetDof();
Vector f_clip(nd);
int dof_id;
double sumPos, sumNeg, u_new_ho, u_new_lo, new_mass, f_clip_min, f_clip_max;
double umin, umax;
const double eps = 1.0e-15;
// Smoothness indicator.
ParGridFunction si_val;
if (smth_indicator)
{
smth_indicator->ComputeSmoothnessIndicator(u, si_val);
}
u.HostRead();
m.HostRead();
du.HostReadWrite();
du_lo.HostRead(); du_ho.HostRead();
for (int k = 0; k < NE; k++)
{
sumPos = sumNeg = 0.0;
// Clip.
for (int j = 0; j < nd; j++)
{
dof_id = k*nd+j;
u_new_ho = u(dof_id) + dt * du_ho(dof_id);
u_new_lo = u(dof_id) + dt * du_lo(dof_id);
umin = u_min(dof_id);
umax = u_max(dof_id);
if (smth_indicator)
{
smth_indicator->UpdateBounds(dof_id, u_new_ho, si_val, umin, umax);
}
f_clip_min = m(dof_id) / dt * (umin - u_new_lo);
f_clip_max = m(dof_id) / dt * (umax - u_new_lo);
f_clip(j) = m(dof_id) * (du_ho(dof_id) - du_lo(dof_id));
f_clip(j) = min(f_clip_max, max(f_clip_min, f_clip(j)));
sumNeg += min(f_clip(j), 0.0);
sumPos += max(f_clip(j), 0.0);
}
new_mass = sumNeg + sumPos;
// Rescale.
for (int j = 0; j < nd; j++)
{
if (new_mass > eps)
{
f_clip(j) = min(0.0, f_clip(j)) -
max(0.0, f_clip(j)) * sumNeg / sumPos;
}
if (new_mass < -eps)
{
f_clip(j) = max(0.0, f_clip(j)) -
min(0.0, f_clip(j)) * sumPos / sumNeg;
}
// Set du to the discrete time derivative featuring the high order
// anti-diffusive reconstruction that leads to an forward Euler
// updated admissible solution.
dof_id = k*nd+j;
du(dof_id) = du_lo(dof_id) + f_clip(j) / m(dof_id);
}
}
}
void ClipScaleSolver::CalcFCTProduct(const ParGridFunction &us, const Vector &m,
const Vector &d_us_HO, const Vector &d_us_LO,
Vector &s_min, Vector &s_max,
const Vector &u_new,
const Array<bool> &active_el,
const Array<bool> &active_dofs, Vector &d_us)
{
us.HostRead();
s_min.HostReadWrite();
s_max.HostReadWrite();
u_new.HostRead();
active_el.HostRead();
active_dofs.HostRead();
// Compute a compatible low-order solution.
Vector dus_lo_fct(us.Size()), us_min(us.Size()), us_max(us.Size());
CalcCompatibleLOProduct(us, m, d_us_HO, s_min, s_max, u_new,
active_el, active_dofs, dus_lo_fct);
ScaleProductBounds(s_min, s_max, u_new, active_el, active_dofs,
us_min, us_max);
// ClipScale solve for d_us.
CalcFCTSolution(us, m, d_us_HO, dus_lo_fct, us_min, us_max, d_us);
ZeroOutEmptyDofs(active_el, active_dofs, d_us);
if (verify_bounds)
{
// Check the bounds of the final solution.
const int NE = pfes.GetNE();
const int ndofs = u_new.Size() / NE;
int dof_id;
const double eps = 1e-12;
Vector us_new(d_us.Size());
add(1.0, us, dt, d_us, us_new);
for (int k = 0; k < NE; k++)
{
if (active_el[k] == false) { continue; }
for (int j = 0; j < ndofs; j++)
{
dof_id = k*ndofs + j;
if (active_dofs[dof_id] == false) { continue; }
/* // this doesn't check round-offs in the division.
double s = us_new(dof_id) / u_new(dof_id);
if (s + eps < s_min(dof_id) ||
s - eps > s_max(dof_id))
{
std::cout << "Final s " << j << " " << k << " "
<< s_min(dof_id) << " "
<< s << " "
<< s_max(dof_id) << std::endl;
std::cout << "---\n";
}*/
if (us_new(dof_id) + eps < us_min(dof_id) ||
us_new(dof_id) - eps > us_max(dof_id))
{
std::cout << "Final us " << j << " " << k << " "
<< us_min(dof_id) << " "
<< us_new(dof_id) << " "
<< us_max(dof_id) << std::endl;
std::cout << "---\n";
MFEM_ABORT("Bounds violation FCT us.");
}
}
}
}
}
void ElementFCTProjection::CalcFCTSolution(const ParGridFunction &u,
const Vector &m,
const Vector &du_HO,
const Vector &du_LO,
const Vector &u_min,
const Vector &u_max,
Vector &du) const
{
const int NE = pfes.GetMesh()->GetNE();
const int s = pfes.GetFE(0)->GetDof();
int dof_id;
DenseMatrix M(s);
Vector ML(s), rhs(s), beta(s), z(s), u_loc, du_HO_loc, du_LO_loc, du_loc,
du_max_loc(s), du_min_loc(s);
MassIntegrator mass_integ;
for (int k = 0; k < NE; k++)
{
u_loc.SetDataAndSize(u.GetData() + k*s, s);
du_HO_loc.SetDataAndSize(du_HO.GetData() + k*s, s);
du_LO_loc.SetDataAndSize(du_LO.GetData() + k*s, s);
du_loc.SetDataAndSize(du.GetData() + k*s, s);
// Local max/min increments.
for (int i = 0; i < s; i++)
{
dof_id = k*s + i;
du_max_loc(i) = (u_max(dof_id) - u(dof_id)) / dt; // positive
du_min_loc(i) = (u_min(dof_id) - u(dof_id)) / dt; // negative
}
// Construct the local mass matrix.
ElementTransformation *T = pfes.GetMesh()->GetElementTransformation(k);
const FiniteElement *el = pfes.GetFE(k);
mass_integ.AssembleElementMatrix(*el, *T, M);
M.Mult(du_HO_loc, rhs);
M.GetRowSums(ML);
for (int i = 0; i < s; i++)
{
// Some different options for beta:
//beta(i) = 1.0;
beta(i) = ML(i);
//beta(i) = Mxy(i);
// The low order flux correction
z(i) = rhs(i) - ML(i) * du_LO_loc(i);
}
// Make beta_i sum to 1.
beta /= beta.Sum();
DenseMatrix F(s);
for (int i = 1; i < s; i++)
{
for (int j = 0; j < i; j++)
{
F(i, j) = M(i, j) * (du_HO_loc(i) - du_HO_loc(j)) +
(beta(j) * z(i) - beta(i) * z(j));
}
}
Vector gp(s), gm(s);
gp = 0.0;
gm = 0.0;
for (int i = 1; i < s; i++)
{
for (int j = 0; j < i; j++)
{
double fij = F(i, j);
if (fij >= 0.0)
{
gp(i) += fij;
gm(j) -= fij;
}
else
{
gm(i) += fij;
gp(j) -= fij;
}
}
}
du_loc = du_LO_loc;
for (int i = 0; i < s; i++)
{
double rp = std::max(ML(i) * (du_max_loc(i) - du_loc(i)), 0.0);
double rm = std::min(ML(i) * (du_min_loc(i) - du_loc(i)), 0.0);
double sp = gp(i), sm = gm(i);
gp(i) = (rp < sp) ? rp / sp : 1.0;
gm(i) = (rm > sm) ? rm / sm : 1.0;
}
for (int i = 1; i < s; i++)
{
for (int j = 0; j < i; j++)
{
double fij = F(i, j), aij;
if (fij >= 0.0)
{
aij = std::min(gp(i), gm(j));
}
else
{
aij = std::min(gm(i), gp(j));
}
fij *= aij;
du_loc(i) += fij / ML(i);
du_loc(j) -= fij / ML(j);
}
}
} // element loop
}
void ElementFCTProjection::CalcFCTProduct(const ParGridFunction &us,
const Vector &m,
const Vector &d_us_HO, const Vector &d_us_LO,
Vector &s_min, Vector &s_max,
const Vector &u_new,
const Array<bool> &active_el,
const Array<bool> &active_dofs, Vector &d_us)
{
us.HostRead();
s_min.HostReadWrite();
s_max.HostReadWrite();
u_new.HostRead();
active_el.HostRead();
active_dofs.HostRead();
// Compute a compatible low-order solution.
Vector dus_lo_fct(us.Size()), us_min(us.Size()), us_max(us.Size());
CalcCompatibleLOProduct(us, m, d_us_HO, s_min, s_max, u_new,
active_el, active_dofs, dus_lo_fct);
ScaleProductBounds(s_min, s_max, u_new, active_el, active_dofs,
us_min, us_max);
// ClipScale solve for d_us.
CalcFCTSolution(us, m, d_us_HO, dus_lo_fct, us_min, us_max, d_us);
ZeroOutEmptyDofs(active_el, active_dofs, d_us);
}
void NonlinearPenaltySolver::CalcFCTSolution(const ParGridFunction &u,
const Vector &m,
const Vector &du_ho,
const Vector &du_lo,
const Vector &u_min,
const Vector &u_max,
Vector &du) const
{
const int size = u.Size();
Vector du_ho_star(size);
double umin, umax;
u.HostRead(); m.HostRead();
du_ho.HostRead(); du_lo.HostRead();
u_min.HostRead(); u_max.HostRead();
du.HostReadWrite();
// Smoothness indicator.
ParGridFunction si_val;
if (smth_indicator)
{
smth_indicator->ComputeSmoothnessIndicator(u, si_val);
}
// Clipped flux.
for (int i = 0; i < size; i++)
{
umin = u_min(i);
umax = u_max(i);
if (smth_indicator)
{
smth_indicator->UpdateBounds(i, u(i) + dt * du_ho(i),
si_val, umin, umax);
}
// Note that this uses u(i) at the old time.
du_ho_star(i) = min( (umax - u(i)) / dt,
max(du_ho(i), (umin - u(i)) / dt) );
}
// Non-conservative fluxes.
Vector fL(size), fH(size);
for (int i = 0; i < size; i++)
{
fL(i) = m(i) * (du_ho_star(i) - du_lo(i));
fH(i) = m(i) * (du_ho_star(i) - du_ho(i));
}
// Restore conservation.
Vector flux_correction(size);
CorrectFlux(fL, fH, flux_correction);
for (int i = 0; i < size; i++)
{
fL(i) += flux_correction(i);
}
for (int i = 0; i < size; i++)
{
du(i) = du_lo(i) + fL(i) / m(i);
}
}
void get_z(double lambda, const Vector &w, const Vector &flux, Vector &zz)
{
for (int j=0; j<w.Size(); j++)
{
zz(j) = (abs(flux(j)) >= lambda*abs(w(j))) ? lambda * w(j) : flux(j);
}
}
double get_lambda_times_sum_z(double lambda,
const Vector &w, const Vector &fluxL)
{
double lambda_times_z;
double lambda_times_sum_z = 0.0;
for (int j=0; j<w.Size(); j++)
{
// In the second case, lambda * w(j) is set to fluxL(j).
lambda_times_z = (abs(fluxL(j)) >= lambda*abs(w(j)))
? lambda * w(j) : fluxL(j);
lambda_times_sum_z += lambda_times_z;
}
return lambda_times_sum_z;
}
void get_lambda(double delta, const Vector &w,
const Vector &fluxL, Vector &zz)
{
// solve nonlinearity F(lambda)=0
double tol=1e-15;
double lambdaLower=0., lambdaUpper = 0.;
double FLower=0., FUpper=0.;
// compute starting F and check F at the min (lambda = 0).
double lambda = 1.0;
double F = delta - get_lambda_times_sum_z(lambda, w, fluxL);
double F0 = delta-get_lambda_times_sum_z(0.0, w, fluxL);
if (abs(F) <= tol)
{
get_z(lambda, w, fluxL, zz);
}
else if (abs(F0)<=tol)
{
get_z(0.0, w, fluxL, zz);
}
// solve non-linearity
// Get lambda values that give Fs on both sides of the zero.
double factor = 1.0;
do
{
factor *= 2.0;
lambdaLower = lambda/factor;
lambdaUpper = factor*lambda;
FLower = delta - get_lambda_times_sum_z(lambdaLower,w,fluxL);
FUpper = delta - get_lambda_times_sum_z(lambdaUpper,w,fluxL);
}
while (F*FLower > 0 && F*FUpper > 0);
// check if either of lambdaLower or lambdaUpper hit the solution
if (FLower==0.0)
{
get_z(lambdaLower, w, fluxL, zz);
}
else if (FUpper==0.0)
{
get_z(lambdaUpper, w, fluxL, zz);
}
// get STARTING lower and upper bounds for lambda
if (F*FLower < 0)
{
lambdaUpper = lambda;
}
else
{
lambdaLower = lambda;
}
// get STARTING lower and upper bounds on F
FLower = delta - get_lambda_times_sum_z(lambdaLower,w,fluxL);
FUpper = delta - get_lambda_times_sum_z(lambdaUpper,w,fluxL);
do
{
// compute new lambda and new F
lambda = 0.5*(lambdaLower+lambdaUpper);
F = delta - get_lambda_times_sum_z(lambda,w,fluxL);
if (F*FLower < 0)
{
lambdaUpper = lambda;
FUpper = F;
}
else
{
lambdaLower = lambda;
FLower = F;
}
}
while (abs(F)>tol);
lambda = 0.5*(lambdaLower+lambdaUpper);
get_z(lambda, w, fluxL, zz);
}
void NonlinearPenaltySolver::CorrectFlux(Vector &fluxL, Vector &fluxH,
Vector &flux_fix) const
{
// This consider any definition of wi. If a violation on MPP is created,
// then wi is s.t. fi=0.
// The idea is to relax the penalization wi in favor of MPP
const int num_cells = pfes.GetNE();
const int xd = pfes.GetFE(0)->GetDof();
Array<int> ldofs;
Vector fluxL_z(xd), fluxH_z(xd), flux_correction_z(xd);
for (int i = 0; i < num_cells; i++)
{
pfes.GetElementDofs(i, ldofs);
fluxL.GetSubVector(ldofs, fluxL_z);
fluxH.GetSubVector(ldofs, fluxH_z);
double fp = 0.0, fn = 0.0;
for (int j = 0; j < xd; j++)
{
if (fluxL_z(j) >= 0.0) { fp += fluxL_z(j); }
else { fn += fluxL_z(j); }
}
double delta = fp + fn;
if (delta == 0.0)
{
flux_correction_z = 0.0;
flux_fix.SetSubVector(ldofs, flux_correction_z);
continue;
}
// compute penalization terms wi's as desired
Vector w(xd);
const double eps = pfes.GetMesh()->GetElementSize(0,0) / pfes.GetOrder(0);
for (int j = 0; j < xd; j++)
{
if (delta > 0.0)
{
w(j) = (fluxL_z(j) > 0.0)
? eps * abs(fluxL_z(j)) + abs(get_max_on_cellNi(fluxH_z))
: 0.0;
}
else
{
w(j) = (fluxL_z(j) < 0.0)
? - eps * abs(fluxL_z(j)) - abs(get_max_on_cellNi(fluxH_z))
: 0.0;
}
}
// compute lambda and the flux correction.
get_lambda(delta, w, fluxL_z, flux_correction_z);
flux_correction_z.Neg();
flux_fix.SetSubVector(ldofs, flux_correction_z);
}
}
double NonlinearPenaltySolver::get_max_on_cellNi(Vector &fluxH) const
{
double MAX = -1.0;
for (int i = 0; i < fluxH.Size(); i++)
{
MAX = max(fabs(fluxH(i)), MAX);
}
return MAX;
}
} // namespace mfem