-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathremhos_fct.hpp
194 lines (162 loc) · 8.23 KB
/
remhos_fct.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
// Copyright (c) 2017, Lawrence Livermore National Security, LLC. Produced at
// the Lawrence Livermore National Laboratory. LLNL-CODE-734707. All Rights
// reserved. See files LICENSE and NOTICE for details.
//
// This file is part of CEED, a collection of benchmarks, miniapps, software
// libraries and APIs for efficient high-order finite element and spectral
// element discretizations for exascale applications. For more information and
// source code availability see http://github.com/ceed.
//
// The CEED research is supported by the Exascale Computing Project 17-SC-20-SC,
// a collaborative effort of two U.S. Department of Energy organizations (Office
// of Science and the National Nuclear Security Administration) responsible for
// the planning and preparation of a capable exascale ecosystem, including
// software, applications, hardware, advanced system engineering and early
// testbed platforms, in support of the nation's exascale computing imperative.
#ifndef MFEM_REMHOS_FCT
#define MFEM_REMHOS_FCT
//#define REMHOS_FCT_PRODUCT_DEBUG
#include "mfem.hpp"
namespace mfem
{
class SmoothnessIndicator;
// Monotone, High-order, Conservative Solver.
class FCTSolver
{
protected:
ParFiniteElementSpace &pfes;
SmoothnessIndicator *smth_indicator;
real_t dt;
const bool needs_LO_input_for_products;
// Computes a compatible slope (piecewise constan = mass_us / mass_u).
// It could also update s_min and s_max, if required.
void CalcCompatibleLOProduct(const ParGridFunction &us,
const Vector &m, const Vector &d_us_HO,
Vector &s_min, Vector &s_max,
const Vector &u_new,
const Array<bool> &active_el,
const Array<bool> &active_dofs,
Vector &d_us_LO_new);
void ScaleProductBounds(const Vector &s_min, const Vector &s_max,
const Vector &u_new, const Array<bool> &active_el,
const Array<bool> &active_dofs,
Vector &us_min, Vector &us_max);
public:
FCTSolver(ParFiniteElementSpace &space,
SmoothnessIndicator *si, real_t dt_, bool needs_LO_prod)
: pfes(space), smth_indicator(si), dt(dt_),
needs_LO_input_for_products(needs_LO_prod) { }
virtual ~FCTSolver() { }
virtual void UpdateTimeStep(real_t dt_new) { dt = dt_new; }
bool NeedsLOProductInput() const { return needs_LO_input_for_products; }
// Calculate du that satisfies the following:
// bounds preservation: u_min_i <= u_i + dt du_i <= u_max_i,
// conservation: sum m_i (u_i + dt du_ho_i) = sum m_i (u_i + dt du_i).
// Some methods utilize du_lo as a backup choice, as it satisfies the above.
virtual void CalcFCTSolution(const ParGridFunction &u, const Vector &m,
const Vector &du_ho, const Vector &du_lo,
const Vector &u_min, const Vector &u_max,
Vector &du) const = 0;
// Used in the case of product remap.
// Given the input, calculates d_us, so that:
// bounds preservation: s_min_i <= (us_i + dt d_us_i) / u_new_i <= s_max_i,
// conservation: sum m_i (us_i + dt d_us_HO_i) = sum m_i (us_i + dt d_us_i).
virtual void CalcFCTProduct(const ParGridFunction &us, const Vector &m,
const Vector &d_us_HO, const Vector &d_us_LO,
Vector &s_min, Vector &s_max,
const Vector &u_new,
const Array<bool> &active_el,
const Array<bool> &active_dofs, Vector &d_us)
{
MFEM_ABORT("Product remap is not implemented for the chosen solver");
}
bool verify_bounds = false;
};
class FluxBasedFCT : public FCTSolver
{
protected:
const SparseMatrix &K, &M;
const Array<int> &K_smap;
// Temporary computation objects.
mutable SparseMatrix flux_ij;
mutable ParGridFunction gp, gm;
const int iter_cnt;
void ComputeFluxMatrix(const ParGridFunction &u, const Vector &du_ho,
SparseMatrix &flux_mat) const;
void AddFluxesAtDofs(const SparseMatrix &flux_mat,
Vector &flux_pos, Vector &flux_neg) const;
void ComputeFluxCoefficients(const Vector &u, const Vector &du_lo,
const Vector &m, const Vector &u_min, const Vector &u_max,
Vector &coeff_pos, Vector &coeff_neg) const;
void UpdateSolutionAndFlux(const Vector &du_lo, const Vector &m,
ParGridFunction &coeff_pos, ParGridFunction &coeff_neg,
SparseMatrix &flux_mat, Vector &du) const;
public:
FluxBasedFCT(ParFiniteElementSpace &space,
SmoothnessIndicator *si, real_t delta_t,
const SparseMatrix &adv_mat, const Array<int> &adv_smap,
const SparseMatrix &mass_mat, int fct_iterations = 1)
: FCTSolver(space, si, delta_t, true),
K(adv_mat), M(mass_mat), K_smap(adv_smap), flux_ij(adv_mat),
gp(&pfes), gm(&pfes), iter_cnt(fct_iterations) { }
virtual void CalcFCTSolution(const ParGridFunction &u, const Vector &m,
const Vector &du_ho, const Vector &du_lo,
const Vector &u_min, const Vector &u_max,
Vector &du) const;
virtual void CalcFCTProduct(const ParGridFunction &us, const Vector &m,
const Vector &d_us_HO, const Vector &d_us_LO,
Vector &s_min, Vector &s_max,
const Vector &u_new,
const Array<bool> &active_el,
const Array<bool> &active_dofs, Vector &d_us);
};
class ClipScaleSolver : public FCTSolver
{
public:
ClipScaleSolver(ParFiniteElementSpace &space,
SmoothnessIndicator *si, real_t dt)
: FCTSolver(space, si, dt, false) { }
virtual void CalcFCTSolution(const ParGridFunction &u, const Vector &m,
const Vector &du_ho, const Vector &du_lo,
const Vector &u_min, const Vector &u_max,
Vector &du) const;
virtual void CalcFCTProduct(const ParGridFunction &us, const Vector &m,
const Vector &d_us_HO, const Vector &d_us_LO,
Vector &s_min, Vector &s_max,
const Vector &u_new,
const Array<bool> &active_el,
const Array<bool> &active_dofs, Vector &d_us);
};
class ElementFCTProjection : public FCTSolver
{
public:
ElementFCTProjection(ParFiniteElementSpace &space, real_t dt)
: FCTSolver(space, NULL, dt, false) { }
virtual void CalcFCTSolution(const ParGridFunction &u, const Vector &m,
const Vector &du_ho, const Vector &du_lo,
const Vector &u_min, const Vector &u_max,
Vector &du) const;
virtual void CalcFCTProduct(const ParGridFunction &us, const Vector &m,
const Vector &d_us_HO, const Vector &d_us_LO,
Vector &s_min, Vector &s_max,
const Vector &u_new,
const Array<bool> &active_el,
const Array<bool> &active_dofs, Vector &d_us);
};
// TODO doesn't conserve mass exactly for some reason.
class NonlinearPenaltySolver : public FCTSolver
{
protected:
void CorrectFlux(Vector &fluxL, Vector &fluxH, Vector &flux_fix) const;
double get_max_on_cellNi(Vector &fluxH) const;
public:
NonlinearPenaltySolver(ParFiniteElementSpace &space,
SmoothnessIndicator *si, real_t dt_)
: FCTSolver(space, si, dt_, false) { }
virtual void CalcFCTSolution(const ParGridFunction &u, const Vector &m,
const Vector &du_ho, const Vector &du_lo,
const Vector &u_min, const Vector &u_max,
Vector &du) const;
};
} // namespace mfem
#endif // MFEM_LAGHOS_FCT