-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathremhos_lo.hpp
171 lines (125 loc) · 4.97 KB
/
remhos_lo.hpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
// Copyright (c) 2017, Lawrence Livermore National Security, LLC. Produced at
// the Lawrence Livermore National Laboratory. LLNL-CODE-734707. All Rights
// reserved. See files LICENSE and NOTICE for details.
//
// This file is part of CEED, a collection of benchmarks, miniapps, software
// libraries and APIs for efficient high-order finite element and spectral
// element discretizations for exascale applications. For more information and
// source code availability see http://github.com/ceed.
//
// The CEED research is supported by the Exascale Computing Project 17-SC-20-SC,
// a collaborative effort of two U.S. Department of Energy organizations (Office
// of Science and the National Nuclear Security Administration) responsible for
// the planning and preparation of a capable exascale ecosystem, including
// software, applications, hardware, advanced system engineering and early
// testbed platforms, in support of the nation's exascale computing imperative.
#ifndef MFEM_REMHOS_LO
#define MFEM_REMHOS_LO
#include "mfem.hpp"
namespace mfem
{
// Low-Order Solver.
class LOSolver
{
protected:
ParFiniteElementSpace &pfes;
real_t dt = -1.0; // usually not known at creation, updated later.
public:
LOSolver(ParFiniteElementSpace &space) : pfes(space) { }
virtual ~LOSolver() { }
virtual void UpdateTimeStep(real_t dt_new) { dt = dt_new; }
virtual void CalcLOSolution(const Vector &u, Vector &du) const = 0;
};
class Assembly;
class DiscreteUpwind : public LOSolver
{
protected:
const SparseMatrix &K;
mutable SparseMatrix D;
const Array<int> &K_smap;
const Vector &M_lumped;
Assembly &assembly;
const bool update_D;
void ComputeDiscreteUpwindMatrix() const;
public:
DiscreteUpwind(ParFiniteElementSpace &space, const SparseMatrix &adv,
const Array<int> &adv_smap, const Vector &Mlump,
Assembly &asmbly, bool updateD);
virtual void CalcLOSolution(const Vector &u, Vector &du) const;
};
class ResidualDistribution : public LOSolver
{
protected:
ParBilinearForm &K;
Assembly &assembly;
const Vector &M_lumped;
const bool subcell_scheme;
const bool time_dep;
public:
ResidualDistribution(ParFiniteElementSpace &space, ParBilinearForm &Kbf,
Assembly &asmbly, const Vector &Mlump,
bool subcell, bool timedep);
virtual void CalcLOSolution(const Vector &u, Vector &du) const;
};
class HOSolver;
class MassBasedAvg : public LOSolver
{
protected:
HOSolver &ho_solver;
const GridFunction *mesh_v;
// Temporary HO solution, used only in the next call to CalcLOSolution().
mutable const Vector *du_HO = nullptr;
void MassesAndVolumesAtPosition(const ParGridFunction &u,
const GridFunction &x,
Vector &el_mass, Vector &el_vol) const;
public:
MassBasedAvg(ParFiniteElementSpace &space, HOSolver &hos,
const GridFunction *mesh_vel)
: LOSolver(space), ho_solver(hos), mesh_v(mesh_vel) { }
// Temporary HO solution, used only in the next call to CalcLOSolution().
void SetHOSolution(Vector &du) { du_HO = &du; }
virtual void CalcLOSolution(const Vector &u, Vector &du) const;
};
//PA based Residual Distribution
class PAResidualDistribution : public ResidualDistribution
{
protected:
// Data at quadrature points
const int quad1D, dofs1D, face_dofs;
mutable Array<double> D_int, D_bdry;
mutable Array<double> IntVelocity, BdryVelocity;
public:
PAResidualDistribution(ParFiniteElementSpace &space, ParBilinearForm &Kbf,
Assembly &asmbly, const Vector &Mlump,
bool subcell, bool timedep);
void SampleVelocity(FaceType type) const;
void SetupPA(FaceType type) const;
void SetupPA2D(FaceType) const;
void SetupPA3D(FaceType) const;
void ApplyFaceTerms(const Vector &x, Vector &y, FaceType type) const;
void ApplyFaceTerms2D(const Vector &x, Vector &y, FaceType type) const;
void ApplyFaceTerms3D(const Vector &x, Vector &y, FaceType type) const;
virtual void CalcLOSolution(const Vector &u, Vector &du) const;
};
class PAResidualDistributionSubcell : virtual public PAResidualDistribution
{
private:
mutable Array<double> SubCellVel;
mutable Array<double> subCell_pa_data;
mutable Array<double> subCellWeights;
void SampleSubCellVelocity() const;
mutable bool init_weights;
public:
PAResidualDistributionSubcell(ParFiniteElementSpace &space,
ParBilinearForm &Kbf,
Assembly &asmbly, const Vector &Mlump,
bool subcell, bool timedep);
void SetupSubCellPA3D() const;
void SetupSubCellPA2D() const;
void SetupSubCellPA() const;
void ComputeSubCellWeights(Array<double> &subWeights) const;
void ApplySubCellWeights(const Vector &u, Vector &y) const;
virtual void CalcLOSolution(const Vector &u, Vector &du) const;
};
} // namespace mfem
#endif // MFEM_REMHOS_LO