-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathremhos_sync.cpp
240 lines (205 loc) · 7.17 KB
/
remhos_sync.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
// Copyright (c) 2017, Lawrence Livermore National Security, LLC. Produced at
// the Lawrence Livermore National Laboratory. LLNL-CODE-734707. All Rights
// reserved. See files LICENSE and NOTICE for details.
//
// This file is part of CEED, a collection of benchmarks, miniapps, software
// libraries and APIs for efficient high-order finite element and spectral
// element discretizations for exascale applications. For more information and
// source code availability see http://github.com/ceed.
//
// The CEED research is supported by the Exascale Computing Project 17-SC-20-SC,
// a collaborative effort of two U.S. Department of Energy organizations (Office
// of Science and the National Nuclear Security Administration) responsible for
// the planning and preparation of a capable exascale ecosystem, including
// software, applications, hardware, advanced system engineering and early
// testbed platforms, in support of the nation's exascale computing imperative.
#include "remhos_sync.hpp"
using namespace std;
namespace mfem
{
void ComputeBoolIndicators(int NE, const Vector &u,
Array<bool> &ind_elem, Array<bool> &ind_dofs)
{
ind_elem.SetSize(NE);
ind_dofs.SetSize(u.Size());
ind_elem.HostWrite();
ind_dofs.HostWrite();
u.HostRead();
const int ndof = u.Size() / NE;
int dof_id;
for (int i = 0; i < NE; i++)
{
ind_elem[i] = false;
for (int j = 0; j < ndof; j++)
{
dof_id = i*ndof + j;
ind_dofs[dof_id] = (u(dof_id) > EMPTY_ZONE_TOL) ? true : false;
if (u(dof_id) > EMPTY_ZONE_TOL) { ind_elem[i] = true; }
}
}
}
// This function assumes a DG space.
void ComputeRatio(int NE, const Vector &us, const Vector &u,
Vector &s, Array<bool> &bool_el, Array<bool> &bool_dof)
{
ComputeBoolIndicators(NE, u, bool_el, bool_dof);
us.HostRead();
u.HostRead();
s.HostWrite();
bool_el.HostRead();
bool_dof.HostRead();
const int ndof = u.Size() / NE;
for (int i = 0; i < NE; i++)
{
if (bool_el[i] == false)
{
for (int j = 0; j < ndof; j++) { s(i*ndof + j) = 0.0; }
continue;
}
const double *u_el = &u(i*ndof), *us_el = &us(i*ndof);
double *s_el = &s(i*ndof);
// Average of the existing ratios. This does not target any kind of
// conservation. The only goal is to have s_avg between the max and min
// of us/u, over the active dofs.
int n = 0;
double sum = 0.0;
for (int j = 0; j < ndof; j++)
{
if (bool_dof[i*ndof + j])
{
sum += us_el[j] / u_el[j];
n++;
}
}
MFEM_VERIFY(n > 0, "Major error that makes no sense");
const double s_avg = sum / n;
for (int j = 0; j < ndof; j++)
{
s_el[j] = (bool_dof[i*ndof + j]) ? us_el[j] / u_el[j] : s_avg;
}
}
}
void ZeroOutEmptyDofs(const Array<bool> &ind_elem,
const Array<bool> &ind_dofs, Vector &u)
{
ind_elem.HostRead();
ind_dofs.HostRead();
u.HostReadWrite();
const int NE = ind_elem.Size();
const int ndofs = u.Size() / NE;
for (int k = 0; k < NE; k++)
{
if (ind_elem[k] == true) { continue; }
for (int i = 0; i < ndofs; i++)
{
if (ind_dofs[k*ndofs + i] == false) { u(k*ndofs + i) = 0.0; }
}
}
}
void ComputeMinMaxS(int NE, const Vector &us, const Vector &u,
double &s_min_glob, double &s_max_glob)
{
u.HostRead();
us.HostRead();
const int size = u.Size();
Vector s(size);
Array<bool> bool_el, bool_dofs;
ComputeRatio(NE, us, u, s, bool_el, bool_dofs);
bool_dofs.HostRead();
double min_s = numeric_limits<double>::infinity();
double max_s = -numeric_limits<double>::infinity();
for (int i = 0; i < size; i++)
{
if (bool_dofs[i] == false) { continue; }
min_s = min(s(i), min_s);
max_s = max(s(i), max_s);
}
MPI_Allreduce(&min_s, &s_min_glob, 1, MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD);
MPI_Allreduce(&max_s, &s_max_glob, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);
}
void ComputeMinMaxS(const Vector &s, const Array<bool> &bool_dofs, int myid)
{
s.HostRead();
bool_dofs.HostRead();
const int size = s.Size();
double min_s = numeric_limits<double>::infinity();
double max_s = -numeric_limits<double>::infinity();
for (int i = 0; i < size; i++)
{
if (bool_dofs[i] == false) { continue; }
min_s = min(s(i), min_s);
max_s = max(s(i), max_s);
}
double min_s_glob, max_s_glob;
MPI_Allreduce(&min_s, &min_s_glob, 1, MPI_DOUBLE, MPI_MIN, MPI_COMM_WORLD);
MPI_Allreduce(&max_s, &max_s_glob, 1, MPI_DOUBLE, MPI_MAX, MPI_COMM_WORLD);
if (myid == 0)
{
std::cout << std::scientific << std::setprecision(5);
std::cout << "min_s: " << min_s_glob
<< "; max_s: " << max_s_glob << std::endl;
}
}
void PrintCellValues(int cell_id, int NE, const Vector &vec, const char *msg)
{
std::cout << msg << std::endl;
const int ndofs = vec.Size() / NE;
for (int i = 0; i < ndofs; i++)
{
std::cout << vec(cell_id * ndofs + i) << " ";
}
std::cout << endl;
}
void VerifyLOProduct(int NE, const Vector &us_LO, const Vector &u_LO,
const Vector &s_min, const Vector &s_max,
const Array<bool> &active_el,
const Array<bool> &active_dofs)
{
const double eps = 1.0e-12;
const int ndofs = u_LO.Size() / NE;
Vector s_min_loc, s_max_loc;
for (int k = 0; k < NE; k++)
{
if (active_el[k] == false) { continue; }
const double *us = &us_LO(k*ndofs), *u = &u_LO(k*ndofs);
s_min_loc.SetDataAndSize(s_min.GetData() + k*ndofs, ndofs);
s_max_loc.SetDataAndSize(s_max.GetData() + k*ndofs, ndofs);
double s_min = numeric_limits<double>::infinity(),
s_max = -numeric_limits<double>::infinity();
for (int j = 0; j < ndofs; j++)
{
if (active_dofs[k*ndofs + j] == false) { continue; }
s_min = min(s_min, s_min_loc(j));
s_max = max(s_max, s_max_loc(j));
}
for (int j = 0; j < ndofs; j++)
{
if (active_dofs[k*ndofs + j] == false) { continue; }
if (us[j] + eps < s_min * u[j] ||
us[j] - eps > s_max * u[j])
{
const double s_LO = us[j] / u[j];
std::cout << "Element " << k << std::endl
<< "At " << j << " out of " << ndofs << std::endl
<< "Basic LO product theorem is violated: " << endl
<< s_min << " <= " << s_LO << " <= " << s_max << std::endl
<< s_min * u[j] << " <= "
<< us[j] << " <= " << s_max * u[j] << std::endl
<< "s_LO = " << us[j] << " / " << u[j] << std::endl;
PrintCellValues(k, NE, us_LO, "us_LO_loc: ");
PrintCellValues(k, NE, u_LO, "u_LO_loc: ");
MFEM_ABORT("[us_LO/u_LO] is not in the full stencil bounds!");
}
}
}
}
double BoolFunctionCoefficient::Eval(ElementTransformation &T,
const IntegrationPoint &ip)
{
if (ind[T.ElementNo] == true)
{
return FunctionCoefficient::Eval(T, ip);
}
else { return 0.0; }
}
} // namespace mfem