From d69ec3ae9ec691df4ebe74fe8698d169dedc1a00 Mon Sep 17 00:00:00 2001 From: "Kenneth E. Jansen" Date: Wed, 11 Oct 2023 23:51:49 +0000 Subject: [PATCH] v2 docs --- examples/fluids/index.md | 6 +++--- 1 file changed, 3 insertions(+), 3 deletions(-) diff --git a/examples/fluids/index.md b/examples/fluids/index.md index 3d83be4835..28196203b7 100644 --- a/examples/fluids/index.md +++ b/examples/fluids/index.md @@ -20,12 +20,12 @@ $$ \begin{aligned} \frac{\partial \rho}{\partial t} + \nabla \cdot \bm{U} &= 0 \\ \frac{\partial \bm{U}}{\partial t} + \nabla \cdot \left( \frac{\bm{U} \otimes \bm{U}}{\rho} + P \bm{I}_3 -\bm\sigma \right) - \rho \bm{b} &= 0 \\ -\frac{\partial E}{\partial t} + \nabla \cdot \left( \frac{(E + P)\bm{U}}{\rho} -\bm{u} \cdot \bm{\sigma} - k \nabla T \right) - \rho \bm{b} \cdot \bm(u) &= 0 \, , \\ +\frac{\partial E}{\partial t} + \nabla \cdot \left( \frac{(E + P)\bm{U}}{\rho} -\bm{u} \cdot \bm{\sigma} - k \nabla T \right) - \rho \bm{b} \cdot \bm{u} &= 0 \, , \\ \end{aligned} $$ (eq-ns) where $\bm{\sigma} = \mu(\nabla \bm{u} + (\nabla \bm{u})^T + \lambda (\nabla \cdot \bm{u})\bm{I}_3)$ is the Cauchy (symmetric) stress tensor, with $\mu$ the dynamic viscosity coefficient, and $\lambda = - 2/3$ the Stokes hypothesis constant. -In equations {eq}`eq-ns`, $\rho$ represents the volume mass density, $U$ the momentum density (defined as $\bm{U}=\rho \bm{u}$, where $\bm{u}$ is the vector velocity field), $E$ the total energy density (defined as $E = \rho e$, where $e$ is the total energy), $\bm{I}_3$ represents the $3 \times 3$ identity matrix, $\bm{b} is a body force vector (e.g., gravity vector), $\bm{\hat{k}}$ the unit vector in the $z$ direction, $k$ the thermal conductivity constant, $T$ represents the temperature, and $P$ the pressure, given by the following equation of state +In equations {eq}`eq-ns`, $\rho$ represents the volume mass density, $U$ the momentum density (defined as $\bm{U}=\rho \bm{u}$, where $\bm{u}$ is the vector velocity field), $E$ the total energy density (defined as $E = \rho e$, where $e$ is the total energy including thermial and kinetic but not potential energy), $\bm{I}_3$ represents the $3 \times 3$ identity matrix, $\bm{b}$ is a body force vector (e.g., gravity vector), $k$ the thermal conductivity constant, $T$ represents the temperature, and $P$ the pressure, given by the following equation of state $$ P = \left( {c_p}/{c_v} -1\right) \left( E - {\bm{U}\cdot\bm{U}}/{(2 \rho)} \right) \, , @@ -63,7 +63,7 @@ $$ S(\bm{q}) &= - \begin{pmatrix} 0\\ - \rho \bm{b}}\\ + \rho \bm{b}\\ \rho \bm{b}\cdot \bm{u} \end{pmatrix}. \end{aligned}