-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDetectorTimeConstantModules.py
85 lines (63 loc) · 2.76 KB
/
DetectorTimeConstantModules.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
######################################Detector Time Constant Modules################################
def lognorm(x, mu, sigma):
import numpy as np
return 1 / (x * sigma * np.sqrt(2 * np.pi)) * np.exp(-(np.log(x) - mu)**2. / (2 * sigma**2.))
def gamma(x, theta=2.5, k=2):
#mu = k*theta
#var = k*theta**2.
import numpy as np
import math
return (x**(k-1) * np.exp(- x / theta)) / (theta**k * math.gamma(k))
def sample_det_tau(det_dict, max_x=50, theta=2.5, k=2):
import numpy as np
y_max = gamma(theta, theta=theta, k=k)
for freq in det_dict.keys():
#assert('tau' not in det_dict[freq][0].keys())
for det in det_dict[freq].keys():
#keep sampling until acceptance
sample_again = True
while(sample_again):
#step1 sample x
x = max_x * np.random.rand()
#step2 calculate f(x)
fx = gamma(x, theta=theta, k=k)
#step3 sample y
y = y_max * np.random.rand()
#acceptance/rejection
if y > fx:
pass
elif x < 1:
pass
else:
det_dict[freq][det]['tau'] = x
sample_again = False
return det_dict
def gen_scanx_dir_map(det_tau, obs_freq, scan_sp=3., N=1024, pixel_size=0.25/60., D_aper=5.):
import scipy.constants as constants
import numpy as np
#relavant params: observing freq, scan speed in deg/s, N resolution of map, pixel size in deg, diameter of main aperture, det tau
ell_fac = 100. / 1. #conversion factor from deg to ell
obs_lam = constants.c / (obs_freq*10**9)
diff_lim = 1.22*(obs_lam / D_aper) * (180. / constants.pi) * ell_fac
ell_cutoff = (scan_sp * det_tau) * ell_fac
ell_max = (N*pixel_size)*ell_fac
ell = np.linspace(0, ell_max, pixel_size)
#create empty map
map_scan_fft = np.zeros((N,N))
#fill each row with lpf TF
for i in np.arange(N):
map_scan_fft[:][i] = lpf_tf_amp(ell, scan_sp, det_tau)
#return whole map
return map_scan_fft
def lpf_tf(ell, scan_sp, det_tau):
return 1 / ( 1 + (1j * ell / (100/(scan_sp*det_tau)) ) )
def lpf_tf_amp(ell, scan_sp, det_tau):
import numpy as np
return 1 / np.sqrt( 1 + (ell**2.*(scan_sp*det_tau)**2)/1e4 )
def convolve_scan_direction(Map, map_scan_fft):
import numpy as np
Map_fft = np.fft.fft2(np.fft.fftshift(Map))
#convolved_map = np.fft.fftshift(np.real(Map_fft * map_scan_fft))
convolved_map = np.fft.fftshift(np.real(np.fft.ifft2(Map_fft * map_scan_fft)))
return convolved_map
############################### ############################### ###############################