-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaliased_noise.py
122 lines (97 loc) · 5.63 KB
/
aliased_noise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
import numpy as np
from scipy import signal
import matplotlib.pylab as plt
import time
import sys
sys.path.append('Scripts/')
from powerlawnoise import powerlaw_psd_gaussian
#of = open("estimate_alias.dat", 'w')
#of.write(f"# {'f3dB':20}\t{'num_downsamples':20}\t{'adc_freq':20}\t{'row_len':20}\t{'num_rows':20}\t\t{'num_array_visits':20}\t{'AFdB':20}\n")
def aliased_noise(num_array_visits, num_downsamples, adc_freq, row_len, num_rows, analog_f3db_hz, rolloff_pole, analog_f3db_hz2, rolloff_pole2, do_plot, v_white_noise, f_corner, samplequotient, save_plot):
# Number of samples per array visit
array_len = row_len*num_rows
start = time.time()
# Generate high bw white noise
mean = 0
std = v_white_noise * np.sqrt(adc_freq/2) #in units of volts, assuming v_noise in v/rt(hz)
num_samples = int(num_array_visits*array_len)
adc_dt = 1./adc_freq
adc_samples = np.random.normal(mean, std, size=num_samples)
adc_sample_times = np.arange(num_samples)*adc_dt
#Generate pink noise
v_pink_noise = np.sqrt(f_corner) * v_white_noise#Pink noise amplitude at 1 Hz is the product of the rolloff level and the rolloff frequency (in the same units)
adc_pink_noise = powerlaw_psd_gaussian(1, num_samples)*v_pink_noise*4#sample rate is 1, amplitude is 1, both need to be scaled, I do not understand this factor of 4
adc_samples = adc_samples + adc_pink_noise
# Filter to desired analog bw
b, a = signal.butter(N=rolloff_pole, Wn=analog_f3db_hz, btype='low', fs=adc_freq)
zi = signal.lfilter_zi(b, a)
adc_samples_filt, _ = signal.lfilter(
b, a, adc_samples, zi=zi*adc_samples[0])
b2, a2 = signal.butter(N=rolloff_pole2, Wn=analog_f3db_hz2, btype='low', fs=adc_freq)
zi = signal.lfilter_zi(b, a)
adc_samples_filt, _ = signal.lfilter(
b, a, adc_samples_filt, zi=zi*adc_samples_filt[0])
f_filt, pxx_filt_den = signal.welch(adc_samples_filt, adc_freq,
nperseg=num_samples//samplequotient)
if do_plot:
# Calculate noise spectra for plotting purposes
# Scale by Nyquist freq so that power spectral density before
# downsampling is ~1
f_raw, pxx_raw_den = signal.welch(adc_samples, adc_freq,
nperseg=num_samples//samplequotient)
f_pink, pxx_pink_den = signal.welch(adc_pink_noise, adc_freq,
nperseg=num_samples//samplequotient)
v_noise_raw = np.mean(pxx_raw_den)
plt.figure()
plt.loglog(f_pink, np.sqrt(pxx_pink_den)*np.sqrt(f_pink)/v_pink_noise)
#print(np.mean(np.sqrt(pxx_pink_den)*np.sqrt(f_pink)/v_pink_noise))
#print(1/np.mean(np.sqrt(pxx_pink_den)*np.sqrt(f_pink)/v_pink_noise))
#Plot spectra
plt.figure()
# plt.semilogx(f, 10.*np.log10(pxx_den))
plt.xlim(0.1, adc_freq/2.)
plt.ylim(5e-12, 1e-6)
#plt.semilogx(f_raw, 10.*np.log10(pxx_raw_den*(adc_freq/2.)))
#plt.semilogx(f_filt, 10.*np.log10(pxx_filt_den*(adc_freq/2.)))
#plt.loglog(f_raw, np.sqrt(pxx_raw_den), label = 'Amplifier Input')
plt.loglog(f_filt, np.sqrt(pxx_filt_den), label = 'Bandwidth Limited Noise')
plt.loglog(f_pink, np.sqrt(pxx_pink_den), label = '1/f Noise Component')
f_full = np.logspace(-1, np.log(adc_freq/2))
plt.loglog(f_full, v_pink_noise/np.sqrt(f_full))
plt.axvline(f_corner)#Show the intended rolloff frequency
figure_title = 'Aliased Amplifier Noise Spectra'
plt.title(figure_title)
plt.grid(True, which = 'both')
plt.xlabel('Frequency [Hz]')
plt.ylabel('Voltage Noise [V/rt(Hz)]')
# Simulate tmux sampling
downsamples = []
for array_visit in range(int(num_array_visits)):
row_visit = adc_samples_filt[array_visit *
array_len:array_visit*array_len+row_len]
row_visit_downsamples = row_visit[row_len-num_downsamples:]
downsamples.append(np.average(row_visit_downsamples))
f_downsample, pxx_downsample_den = signal.welch(downsamples, adc_freq/float(row_len*num_rows),
nperseg=len(downsamples)//samplequotient)
#Evaluate voltage noise
science_band = np.where(np.logical_and(f_downsample>=100, f_downsample<=400))
v_noise_aliased= np.sqrt(np.mean(pxx_downsample_den[science_band]))
v_noise_1f = v_pink_noise/np.sqrt(0.1) #evaluated at 0.1 Hz, low end of JAMA requirement
#of.write(
# f"{analog_f3db_hz:.4e}\t{num_downsamples:20}\t{adc_freq:.3e}\t{row_len:20}\t{num_rows:20}\t{num_array_visits:.3e}\t{AFdB:.2f}\n")
f_multiplexed = np.logspace(-1, np.log10(f_downsample[-1]))
total_noise_spectrum = np.sqrt(np.square(v_pink_noise/np.sqrt(f_multiplexed)) + np.square(v_noise_aliased))
if do_plot:
#plt.title(
#f"F3dB={analog_f3db_hz:.4e} nds={num_downsamples} adcf={adc_freq:.3e} rl={row_len} nr={num_rows} nav={num_array_visits:.3e} aliased_noise={v_noise_aliased:.2f} V/rt(Hz)\n", fontsize=8)
plt.loglog(f_downsample, np.sqrt(pxx_downsample_den), label = 'Multiplexing Aliased Noise')
f_multiplexed = np.logspace(-1, np.log10(f_downsample[-1]))
plt.loglog(f_multiplexed, total_noise_spectrum, label='2 component multiplexed noise result')
plt.legend(loc='best')
if save_plot:
plt.savefig('figures/aliased_noise_example.png')#, bbox_inches='tight
#of.close()
end = time.time()
#print(end-start)
return(v_noise_aliased, v_noise_1f, f_filt, np.sqrt(pxx_filt_den), f_multiplexed, total_noise_spectrum)
plt.show()