-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathaliased_noise_fft.py
88 lines (72 loc) · 3.5 KB
/
aliased_noise_fft.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
import numpy as np
from scipy import signal
from scipy.fft import rfft, rfftfreq
import matplotlib.pylab as plt
import time
import sys
sys.path.append('Scripts/')
from colorednoise import powerlaw_psd_gaussian
#of = open("estimate_alias.dat", 'w')
#of.write(f"# {'f3dB':20}\t{'num_downsamples':20}\t{'adc_freq':20}\t{'row_len':20}\t{'num_rows':20}\t\t{'num_array_visits':20}\t{'AFdB':20}\n")
def aliased_noise_fft(num_array_visits, num_downsamples, adc_freq, row_len, num_rows, analog_f3db_hz, do_plot, v_white_noise, v_pink_noise):
# Number of samples per array visit
array_len = row_len*num_rows
start = time.time()
# Generate high bw white noise
mean = 0
std = v_white_noise * np.sqrt(adc_freq/2) #in units of volts, assuming v_noise in v/rt(hz)
num_samples = int(num_array_visits*array_len)
adc_dt = 1./adc_freq
adc_samples = np.random.normal(mean, std, size=num_samples)
adc_sample_times = np.arange(num_samples)*adc_dt
#Generate pink noise
adc_pink_noise = powerlaw_psd_gaussian(1, num_samples)*v_pink_noise#sample rate is 1, amplitude is 1, both need to be scaled
adc_samples = adc_samples + adc_pink_noise
# Filter to desired analog bw
b, a = signal.butter(N=1, Wn=analog_f3db_hz, btype='low', fs=adc_freq)
zi = signal.lfilter_zi(b, a)
adc_samples_filt, _ = signal.lfilter(
b, a, adc_samples, zi=zi*adc_samples[0])
#
# Scale by Nyquist freq so that power spectral density before
# downsampling is ~1
pxx_raw_den = rfft(adc_samples)
f_raw = rfftfreq(num_samples, 1 / adc_freq)
pxx_filt_den = rfft(adc_samples_filt)
f_filt = rfftfreq(num_samples, 1 / adc_freq)
v_noise_raw = np.mean(pxx_raw_den)
# Simulate tmux sampling
downsamples = []
for array_visit in range(int(num_array_visits)):
row_visit = adc_samples_filt[array_visit *
array_len:array_visit*array_len+row_len]
row_visit_downsamples = row_visit[row_len-num_downsamples:]
downsamples.append(np.average(row_visit_downsamples))
pxx_downsample_den = rfft(downsamples)
f_downsample = rfftfreq(len(downsamples), float(row_len*num_rows) / adc_freq)
#AFdB = 10.*np.log10(np.mean(pxx_downsample_den)*(adc_freq/2.))
#print(f'Calculating from dB {10**(AFdB/20)}')
#print(f'* AFdB = {AFdB} dBpwr')
v_noise_aliased = np.sqrt(np.max(pxx_downsample_den))
print(f'Aliased white noise level is {v_noise_aliased} V/rt(Hz)')
#of.write(
# f"{analog_f3db_hz:.4e}\t{num_downsamples:20}\t{adc_freq:.3e}\t{row_len:20}\t{num_rows:20}\t{num_array_visits:.3e}\t{AFdB:.2f}\n")
if do_plot:
plt.figure()
plt.title(
f"F3dB={analog_f3db_hz:.4e} nds={num_downsamples} adcf={adc_freq:.3e} rl={row_len} nr={num_rows} nav={num_array_visits:.3e} aliased_noise={v_noise_aliased:.2f} V/rt(Hz)\n", fontsize=8)
# plt.semilogx(f, 10.*np.log10(pxx_den))
plt.xlim(1, adc_freq/2.)
plt.ylim(5e-10, 1e-6)
#plt.semilogx(f_raw, 10.*np.log10(pxx_raw_den*(adc_freq/2.)))
#plt.semilogx(f_filt, 10.*np.log10(pxx_filt_den*(adc_freq/2.)))
plt.loglog(f_raw, np.sqrt(pxx_raw_den))
plt.loglog(f_filt, np.sqrt(pxx_filt_den))
#plt.semilogx(f_downsample, 10. *
# np.log10(pxx_downsample_den*(adc_freq/2.)))
plt.loglog(f_downsample, np.sqrt(pxx_downsample_den))
#of.close()
end = time.time()
print(end-start)
return(v_noise_aliased, f_downsample, pxx_downsample_den)
plt.show()