-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathplot_raw.py
218 lines (183 loc) · 6.81 KB
/
plot_raw.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
import matplotlib.pyplot as plt
import numpy as np
import os
import sys
import glob
import pandas as pd
from scipy.signal import wiener
from scipy.ndimage.filters import median_filter
from optparse import OptionParser
parser = OptionParser()
parser.add_option("-i", "--interactive",
action="store_true", dest="interactive", default=False,
help="if flag present, plot to screen, not to file")
(options, args) = parser.parse_args()
# deprecated; now done in the .in files since this can change per-column
# sq1_fb to bias current conversion factor
# scale_factor=1.0794e-9 # nA/DAC w/ DAC=sq1_fb
datasets = []
in_file = open(sys.argv[1], 'r')
a = in_file.readlines()
title = None
islog = 'xy'
ylabel = None
ymin = None
ymax = None
xmin = None
xmax = None
filter_size = 25
color_order = 1
figfilename = None
lines = []
for line in a:
split_line = line.split()
if '#' in line:
continue
elif "title=" in line:
title = line.lstrip('title=').rstrip()
elif "ylabel=" in line:
ylabel = line.lstrip('ylabel=').rstrip()
elif "figfilename=" in line:
figfilename = line.lstrip('figfilename=').rstrip()
elif "ymax=" in line:
ymax = float(line.lstrip('ymax=').rstrip())
elif "ymin=" in line:
ymin = float(line.lstrip('ymin=').rstrip())
elif "xmax=" in line:
xmax = float(line.lstrip('xmax=').rstrip())
elif "xmin=" in line:
xmin = float(line.lstrip('xmin=').rstrip())
elif "islog=" in line:
islog = line.lstrip('islog=').rstrip()
elif "color_order=" in line:
color_order = float(line.lstrip('color_order=').rstrip())
elif 'filter_size=' in line:
filter_size = float(line.lstrip('filter_size=').rstrip())
elif '.meanfft' in split_line[0]:
dataset = split_line[0].lstrip().rstrip()
scale_factor = float(split_line[1].lstrip().rstrip())
label = ' '.join(split_line[2:]).lstrip().rstrip()
print('dataset=', dataset, '\tlabel=', label)
datasets.append((dataset, scale_factor, label))
elif (split_line[0] == 'line'):
dct = {}
for p in split_line[1:]:
pk = p.split('=')[0]
pv = p.split('=')[1].lstrip().rstrip()
dct[pk] = pv
lines.append(dct)
elif 'daqoutfile(s)=' in line:
daqoutfiles = (line.lstrip(
'daqoutfile(s)=').rstrip().lstrip()).split(',')
print('lines=', lines)
print('daqoutfile(s)=', daqoutfiles)
rawctimes = '_'.join([os.path.basename(daqof)[4:-4] for daqof in daqoutfiles])
outdir = 'raw_'+rawctimes
path = 'output/%s/' % (outdir)
print('path=', path)
print('datasets=', datasets)
print('title=', title)
print('islog=', islog)
print('ylabel=', ylabel)
print('ymin=', ymin)
print('ymax=', ymax)
print('xmin=', xmin)
print('xmax=', xmax)
print('color_order=', color_order)
print('filter_size=', filter_size)
print('figfilename=', figfilename)
if ymin is None or ymax is None:
ymin = 1e-13
ymax = 1e-6
if title != None:
print('here')
plt.suptitle(title, fontsize=8)
# fig=plt.figure(figsize=(12,14))
upper_freq = 200.
print(datasets)
counter = 0
# cmap=plt.get_cmap('Spectral')
cmap = plt.get_cmap('cool')
for (data, scale_factor, label) in datasets:
print('* plotting', 'data=%s' % data, 'scale_factor=%s' %
scale_factor, 'label=%s' % label, '...')
if len(datasets) > 1:
xcolor = float(datasets.index(
(data, scale_factor, label)))/float(len(datasets)-1)
else:
xcolor = 1.
if color_order < 0:
xcolor = 1-xcolor
color = cmap(xcolor)
print(('xcolor=%0.3f, color=' % xcolor), color)
# load and plot normal
#
# check if file was compressed
compression = None
# find data
data = glob.glob('output/*/%s' % (data))[0]
if data.endswith('.bz2'):
compression = 'bz2'
# done checking if file was compressed
#
datadf = pd.read_csv(data, delim_whitespace=True, error_bad_lines=False, index_col=False,
header=None, compression=compression, names=[u'freq', u'Pxx_den'])
datadf = datadf.dropna(axis=1, how='all')
# for filtering - http://www.nehalemlabs.net/prototype/blog/2013/04/09/an-introduction-to-smoothing-time-series-in-python-part-ii-wiener-filter-and-smoothing-splines/
print(np.array(datadf[u'Pxx_den'].values)[0])
data_asd = np.sqrt(np.array(datadf[u'Pxx_den'].values))*scale_factor
# plt.loglog(datadf['freq'].values,data_psd,colors[idx],alpha=0.75,label=labels[idx])
# plt.loglog(datadf['freq'].values,wiener(data_psd,mysize=50),colors[idx],alpha=0.75,label=labels[idx])
data_rms_x1e6 = (1.e6/1.e9)*scale_factor*np.sqrt(np.sum(
np.array(datadf[u'Pxx_den'].values))*np.median(np.diff(datadf['freq'].values)))
print('* Not filtering...')
# filt_data_asd=median_filter(data_asd,size=filter_size)
filt_data_asd = data_asd
if 'x' in islog and 'y' in islog:
plt.loglog(datadf['freq'].values, filt_data_asd,
color=color, alpha=0.8, label=label + f' rms={data_rms_x1e6:.2f} uV')
elif 'x' in islog:
plt.semilogx(datadf['freq'].values, filt_data_asd,
color=color, alpha=0.8, label=label)
elif 'y' in islog:
plt.semilogy(datadf['freq'].values, filt_data_asd,
color=color, alpha=0.8, label=label)
else:
plt.plot(datadf['freq'].values, filt_data_asd,
color=color, alpha=0.8, label=label)
max_freq = np.max(datadf['freq'].values)
if max_freq > upper_freq:
upper_freq = max_freq
# done loading and plotting data
# np.savetxt('tmp%d.out'%(counter),(datadf['freq'].values,median_filter(data_asd,size=25)))
counter = counter+1
plt.xlabel('Frequency (Hz)')
if ylabel != None:
plt.ylabel(ylabel)
else:
plt.ylabel('ASD (DAC/rt.Hz)')
plt.gca().set_title(','.join(daqoutfiles), fontsize=6)
if xmin is None:
xmin = 0.1
if xmax is None:
xmax = upper_freq
plt.xlim(xmin, xmax)
plt.ylim(ymin, ymax)
# noise predictions from https://phy-wiki.princeton.edu/advactwiki/pmwiki.php?n=AdvACTDetector20141125.Uploads?action=download&upname=almnbolo1_update20141125.pdf
# plt.plot([xmin,xmax],[0.9,0.9],'k--',label='AD797A typ. noise @ 1kHz (0.9 nV/rt.Hz -> 3.5 pA/rt.Hz?)')
for line_dict in lines:
x = np.linspace(xmin, xmax)
y = float(line_dict['m'])*x+float(line_dict['b'])
plt.plot(x, y, color=line_dict['c'],
ls=line_dict['ls'], label=line_dict['label'])
handles, labels = plt.gca().get_legend_handles_labels()
leg = plt.legend(ncol=1, loc='best')
leg.get_frame().set_alpha(0)
leg.get_frame().set_edgecolor('white')
if figfilename is not None and not options.interactive:
plt.savefig(figfilename)
elif options.interactive:
plt.show()
else:
print('* figfilename=', figfilename, ' and --interactive=',
options.interactive, ', so doing nothing ...')