-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsquid_noise_model.py
647 lines (512 loc) · 31.8 KB
/
squid_noise_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
import numpy as np
from scipy import signal
from scipy.integrate import quad
import matplotlib.pylab as plt
import time
import configparser
import sys
import json
sys.path.append('Scripts/')
from powerlawnoise import powerlaw_psd_gaussian
from aliased_noise import aliased_noise
def Butterworth_Transfer_Function(f, fc, n):
V_out = 1/np.sqrt(1 + (f/fc)**(2*n))
return V_out
def k_manganin(T):
T_list = np.array([0.1, 0.4, 1, 4, 10, 20, 80, 150, 300])
k_list = np.array([6e-3, 2e-2, 6e-2, 5e-1, 2, 3.3, 13, 16, 22])
k_out = np.interp(T, T_list, k_list)
return k_out
def kT_manganin(T):
T_list = np.array([0.1, 0.4, 1, 4, 10, 20, 80, 150, 300])
k_list = np.array([6e-3, 2e-2, 6e-2, 5e-1, 2, 3.3, 13, 16, 22])
k_out = np.interp(T, T_list, k_list)
return k_out*T
def kTi_manganin(T):
T_list = np.array([0.1, 0.4, 1, 4, 10, 20, 80, 150, 300])
k_list = np.array([6e-3, 2e-2, 6e-2, 5e-1, 2, 3.3, 13, 16, 22])
k_out = np.interp(T, T_list, k_list)
return k_out/T
def noise_output(noisetag, configfilename, squidfilename):
configfile = configparser.ConfigParser()
configfile.read(configfilename)
squidfile = configparser.ConfigParser()
squidfile.read(squidfilename)
kB = 1.38E-23 #SI units
if noisetag == 'sq1_shunt_johnson_rs_closed':
#Provides johnson noise from the SQ1 shunt, assuming all row select switches are closed (for SSA only noise)
T_SSA = float(configfile['SSA']['SSA_TEMP_KELVIN'])
R_SQ1_Shunt = float(configfile['SQ1']['SQ1_SHUNT_OHM'])
R_SQ1_Para = float(configfile['SQ1']['SQ1_R_par'])
dV_SSA_dI_SSAin = float(squidfile['SSA']['dV_SSA_dI_SSA_IN_UPSLOPE'])
L_SSA_in = float(configfile['SSA']['SSA_L_IN_HENRY'])
L_NbTi_cable = float(configfile['CRYOCABLE']['NBTI_ROUNDTRIP_INDUCTANCE_HENRY'])
R_tot = R_SQ1_Shunt + R_SQ1_Para
I_Johnson_SQ1_Shunt = np.sqrt(4*kB*T_SSA/R_tot)
V_Johnson_SQ1_Shunt = I_Johnson_SQ1_Shunt * dV_SSA_dI_SSAin
L_tot = L_SSA_in + L_NbTi_cable
f_rolloff = R_tot/(2*np.pi*L_tot)
n_pole = 1
return(V_Johnson_SQ1_Shunt, f_rolloff, 0, n_pole)
if noisetag == 'sq1_shunt_johnson_rs_open':
#Provides johnson noise from the SQ1 shunt, assuming one row select switches is open (for SQ1 noise)
T_SSA = float(configfile['SSA']['SSA_TEMP_KELVIN'])
T_SQ1 = float(configfile['SQ1']['SQ1_TEMP_KELVIN'])
R_SQ1_Shunt = float(configfile['SQ1']['SQ1_SHUNT_OHM'])
R_SQ1_Para = float(configfile['SQ1']['SQ1_R_par'])
R_SQ1_Series = float(squidfile['SQ1']['R_SERIES'])
R_SQ1_Dyn = float(squidfile['SQ1']['R_DYN_OPERATING_UPSLOPE'])
dV_SSA_dI_SSAin = float(squidfile['SSA']['dV_SSA_dI_SSA_IN_UPSLOPE'])
L_SSA_in = float(configfile['SSA']['SSA_L_IN_HENRY'])
L_NbTi_cable = float(configfile['CRYOCABLE']['NBTI_ROUNDTRIP_INDUCTANCE_HENRY'])
L_SQ1 = float(squidfile['SQ1']['L_SQ1'])
R_4K = R_SQ1_Shunt + R_SQ1_Para
R_100mK = R_SQ1_Series + R_SQ1_Dyn
V_Johnson_SQ1_Stage = np.sqrt(4*kB*T_SSA*R_4K + 4*kB*T_SQ1*R_100mK)
I_Johnson_SQ1_Stage = V_Johnson_SQ1_Stage/(R_4K + R_100mK)
V_Johnson_Amp = I_Johnson_SQ1_Stage * dV_SSA_dI_SSAin
R_tot = R_4K + R_100mK
L_tot = L_SSA_in + L_NbTi_cable + L_SQ1
f_rolloff = R_tot/(2*np.pi*L_tot)
n_pole = 1
return(V_Johnson_Amp, f_rolloff, 0, n_pole)
if noisetag == 'tes_shunt_johnson':
T_TES = float(configfile['SQ1']['SQ1_TEMP_KELVIN']) #same temp for TES and SQ1
R_Shunt = float(configfile['TES']['TES_R_SHUNT'])
R_TES = float(configfile['TES']['TES_R_OP'])
L_NYQ = float(configfile['TES']['L_NYQUIST'])
dV_SSA_dI_SSAin = float(squidfile['SSA']['dV_SSA_dI_SSA_IN_UPSLOPE'])
dI_SSAin_dI_SQ1in = float(squidfile['SQ1']['dI_SSA_IN_dI_SQ1_IN_upslope'])
I_Johnson_TES_Shunt = np.sqrt(4*kB*T_TES/(R_Shunt+R_TES))
V_out = I_Johnson_TES_Shunt * dV_SSA_dI_SSAin * dI_SSAin_dI_SQ1in
f_nyquist = (R_TES + R_Shunt)/(2*np.pi*L_NYQ)
print('tes shunt johnson')
print(V_out)
print(f_nyquist)
n_pole = 1
return(V_out, f_nyquist, 0, n_pole)
if noisetag == 'ssa_bias_cryocable_johnson':
T_base = float(configfile['SSA']['SSA_TEMP_KELVIN'])
T_warm = 300
kint = quad(k_manganin, T_base, T_warm, full_output=1)[0]
kTint = quad(kT_manganin, T_base, T_warm, full_output=1)[0]
R_cable = float(squidfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_RESISTANCE_OHMS'])
v_out = np.sqrt(4*kB*R_cable*kTint/(kint))
C_cable = float(configfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_CAPACITANCE_FARAD'])
f_rolloff = 1/(2*np.pi*R_cable*C_cable)
n_pole = 5
return(v_out, f_rolloff, 0, n_pole)
if noisetag == 'sq1_bias_cryocable_johnson_rs_closed':
T_base = float(configfile['SSA']['SSA_TEMP_KELVIN'])
T_warm = 300
kint = quad(k_manganin, T_base, T_warm, full_output=1)[0]
kTint = quad(kT_manganin, T_base, T_warm, full_output=1)[0]
R_cable = float(squidfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_RESISTANCE_OHMS'])
dV_SSA_dI_SSAin = float(squidfile['SSA']['dV_SSA_dI_SSA_IN_UPSLOPE'])
R_SQ1_BIAS_LIST = np.array(json.loads(configfile.get("SQ1","SQ1B_BACKPLANE_RESISTANCE_OHMS")))
if isinstance(R_SQ1_BIAS_LIST, np.ndarray):
R_backplane = np.sum(R_SQ1_BIAS_LIST)
else:
R_backplane = R_SQ1_BIAS_LIST
R_board = float(configfile['SQ1']['SQ1B_BC_RESISTANCE_OHM'])
R_tot = R_cable + R_backplane + R_board
R_SQ1_Shunt = float(configfile['SQ1']['SQ1_SHUNT_OHM'])
R_SQ1_Para = float(configfile['SQ1']['SQ1_R_par'])
V_Johnson_SQ1_Bias_Cable = np.sqrt(4*kB*R_cable*kTint/(kint))
V_Johnson_SQ1_Bias_R = np.sqrt(4*kB*T_warm*(R_backplane + R_board))
I_Johnson_SQ1_Bias_Cable = (V_Johnson_SQ1_Bias_Cable+V_Johnson_SQ1_Bias_R)/R_tot
I_Johnson_SQ1_In = I_Johnson_SQ1_Bias_Cable/(1 + (R_SQ1_Para/R_SQ1_Shunt))
V_Johnson_Out = I_Johnson_SQ1_In * dV_SSA_dI_SSAin
L_SSA_in = float(configfile['SSA']['SSA_L_IN_HENRY'])
L_NbTi_cable = float(configfile['CRYOCABLE']['NBTI_ROUNDTRIP_INDUCTANCE_HENRY'])
L_cold = L_SSA_in + L_NbTi_cable
C_cable = float(configfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_CAPACITANCE_FARAD'])
f_rolloff = R_cable/(2*np.pi*L_cold)
f_cable = 1/(2*np.pi*R_cable*C_cable)
f_rolloff = np.append(f_rolloff, f_cable)
n_pole = 1
return(V_Johnson_Out, f_rolloff, 0, n_pole)
if noisetag == 'sq1_bias_cryocable_johnson_rs_open':
T_base = float(configfile['SSA']['SSA_TEMP_KELVIN'])
T_warm = 300
kint = quad(k_manganin, T_base, T_warm, full_output=1)[0]
kTint = quad(kT_manganin, T_base, T_warm, full_output=1)[0]
R_cable = float(squidfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_RESISTANCE_OHMS'])
dV_SSA_dI_SSAin = 1/float(configfile['SSA']['dI_SSA_IN_dV_SSA']) *1e3 #V per A
R_SQ1_BIAS_LIST = np.array(json.loads(configfile.get("SQ1","SQ1B_BACKPLANE_RESISTANCE_OHMS")))
if isinstance(R_SQ1_BIAS_LIST, np.ndarray):
R_backplane = np.sum(R_SQ1_BIAS_LIST)
else:
R_backplane = R_SQ1_BIAS_LIST
R_board = float(configfile['SQ1']['SQ1B_BC_RESISTANCE_OHM'])
R_tot = R_cable + R_backplane + R_board
R_SQ1_Shunt = float(configfile['SQ1']['SQ1_SHUNT_OHM'])
R_SQ1_Dyn = float(squidfile['SQ1']['R_DYN_OPERATING_UPSLOPE'])
R_SQ1_Para = float(configfile['SQ1']['SQ1_R_par'])
R_SQ1_Series = float(squidfile['SQ1']['R_SERIES'])
R_IN_LEG = R_SQ1_Dyn + R_SQ1_Para + R_SQ1_Series
V_Johnson_SQ1_Bias_Cable = np.sqrt(4*kB*R_cable*kTint/(kint))
V_Johnson_SQ1_Bias_R = np.sqrt(4*kB*T_warm*(R_backplane + R_board))
I_Johnson_SQ1_Bias_Cable = (V_Johnson_SQ1_Bias_Cable+V_Johnson_SQ1_Bias_R)/R_tot
I_Johnson_SQ1_In = I_Johnson_SQ1_Bias_Cable/(1 + (R_IN_LEG/R_SQ1_Shunt))
V_Johnson_Out = I_Johnson_SQ1_In * dV_SSA_dI_SSAin
L_SSA_in = float(configfile['SSA']['SSA_L_IN_HENRY'])
L_NbTi_cable = float(configfile['CRYOCABLE']['NBTI_ROUNDTRIP_INDUCTANCE_HENRY'])
L_SQ1 = float(squidfile['SQ1']['L_SQ1'])
L_cold = L_SSA_in + L_NbTi_cable + L_SQ1
C_cable = float(configfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_CAPACITANCE_FARAD'])
f_rolloff = R_cable/(2*np.pi*L_cold)
f_cable = 1/(2*np.pi*R_cable*C_cable)
f_rolloff = np.append(f_rolloff, f_cable)
n_pole = 1
return(V_Johnson_Out, f_rolloff, 0, n_pole)
if noisetag == 'ssa_fb_cryocable_johnson':
T_base = float(configfile['SSA']['SSA_TEMP_KELVIN'])
T_warm = 300
kint = quad(k_manganin, T_base, T_warm, full_output=1)[0]
kint = quad(k_manganin, T_base, T_warm, full_output=1)[0]
kTint = quad(kT_manganin, T_base, T_warm, full_output=1)[0]
ADU_conversion = float(configfile['PREAMPADC']['ADU_TO_VOLTS_AT_PREAMP_INPUT'])
SSAFB_conversion = float(configfile['SSA']['SSAFB_AMP_DAC'])
dV_SSA_dFB_SSA = float(configfile['SSA']['dV_SSA_ADU_dFB_SSA_ADC'])
dV_SSA_dI_SSAin = float(squidfile['SSA']['dV_SSA_dI_SSA_IN_UPSLOPE'])
turns_ratio = float(squidfile['SSA']['M_SSA_IN'])/float(squidfile['SSA']['M_SSA_FB'])
R_cable = float(squidfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_RESISTANCE_OHMS'])
R_backplane = float(configfile['SSA']['SSA_FB_BACKPLANE_RESISTANCE_OHMS'])
R_board = np.array(json.loads(configfile.get("SSA","SSA_FB_BC_RESISTANCE_OHM")))
R_tot = R_cable + R_backplane + np.sum(R_board)
V_Johnson_SSA_FB_Cable = np.sqrt(4*kB*R_cable*kTint/(kint))
V_Johnson_SSA_FB_R = np.sqrt(4*kB*T_warm*(R_backplane + np.sum(R_board)))
I_Johnson_SSA_FB_Cable = (V_Johnson_SSA_FB_Cable + V_Johnson_SSA_FB_R)/R_tot
V_Johnson_Out = I_Johnson_SSA_FB_Cable * dV_SSA_dI_SSAin/turns_ratio
C_cable = float(configfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_CAPACITANCE_FARAD'])
if configfile['PREAMPADC']['CIRCUIT_TYPE']=='S4':
C_filt = np.array(json.loads(configfile.get("SSA","SSA_FB_LPF_FARAD")))
f_rolloff = 1/(2*np.pi*R_board*C_filt)
f_cable = 1/(2*np.pi*R_cable*C_cable)
f_rolloff = np.append(f_rolloff, f_cable)
else:
f_rolloff = 1/(2*np.pi*R_cable*C_cable)
#f_rolloff = R_cable/(2*np.pi*L_SSA_FB)
n_pole = 1
return(V_Johnson_Out, f_rolloff, 0, n_pole)
if noisetag == 'sq1_fb_cryocable_johnson':
T_base = float(configfile['SSA']['SSA_TEMP_KELVIN'])
T_warm = 300
kint = quad(k_manganin, T_base, T_warm, full_output=1)[0]
kint = quad(k_manganin, T_base, T_warm, full_output=1)[0]
kTint = quad(kT_manganin, T_base, T_warm, full_output=1)[0]
R_SQ1_FB_BACKPLANE = float(configfile['SQ1']['SQ1_FB_BACKPLANE_RESISTANCE_OHMS'])
R_Cable = float(squidfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_RESISTANCE_OHMS'])
C_Cable = float(configfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_CAPACITANCE_FARAD'])
R_Filt = np.array(json.loads(configfile.get("SQ1","SQ1_FB_LPF_OHM")))
C_Filt = np.array(json.loads(configfile.get("SQ1","SQ1_FB_LPF_FARAD")))
if isinstance(R_Filt, np.ndarray):
R_Tot = np.sum(R_Filt) + R_SQ1_FB_BACKPLANE + R_Cable
else:
R_Tot = R_SQ1_FB_BACKPLANE + R_Filt + R_Cable
dV_SSA_dI_SSAin = float(squidfile['SSA']['dV_SSA_dI_SSA_IN_UPSLOPE'])
dI_SSAin_dI_SQ1in = float(squidfile['SQ1']['dI_SSA_IN_dI_SQ1_IN_upslope'])
turns_ratio = float(squidfile['SQ1']['M_SQ1_IN'])/float(squidfile['SQ1']['M_SQ1_FB'])
V_Johnson_SQ1_FB_Cable = np.sqrt(4*kB*R_Cable*kTint/(kint))
V_Johnson_SQ1_FB_R = np.sqrt(4*kB*T_warm*(R_SQ1_FB_BACKPLANE + np.sum(R_Filt)))
I_Johnson_SQ1_FB_Cable = (V_Johnson_SQ1_FB_Cable + V_Johnson_SQ1_FB_R)/R_Tot
V_Johnson_Out = I_Johnson_SQ1_FB_Cable * dV_SSA_dI_SSAin * dI_SSAin_dI_SQ1in/turns_ratio
f_filt = 1/(2*np.pi*R_Filt*C_Filt)
f_cable = 1/(2*np.pi*R_Cable*C_Cable)
f_rolloff = np.append(f_filt, f_cable)
n_pole = 1
return(V_Johnson_Out, f_rolloff, 0, n_pole)
if noisetag == 'tes_bias_cryocable_johnson':
T_base = float(configfile['SSA']['SSA_TEMP_KELVIN'])
T_warm = 300
kint = quad(k_manganin, T_base, T_warm, full_output=1)[0]
kTint = quad(kT_manganin, T_base, T_warm, full_output=1)[0]
R_cable = float(squidfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_RESISTANCE_OHMS'])
C_cable = float(configfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_CAPACITANCE_FARAD'])
dV_SSA_dI_SSAin = float(squidfile['SSA']['dV_SSA_dI_SSA_IN_UPSLOPE'])
dI_SSAin_dI_SQ1in = float(squidfile['SQ1']['dI_SSA_IN_dI_SQ1_IN_upslope'])
TES_BC_RESISTANCE_OHM = np.array(json.loads(configfile.get("TES","TES_BIAS_BC_RESISTANCE_OHM")))
if configfile['PREAMPADC']['CIRCUIT_TYPE']=='S4':
R_Filt = np.array(json.loads(configfile.get("TES","TES_BIAS_LPF_OHM")))
V_Johnson_TES_Bias_R = np.sqrt(4*kB*T_warm*np.sum(R_Filt))
R_tot = TES_BIAS_BACKPLANE_RESISTANCE_OHMS + np.sum(R_Filt) + R_cable
else:
TES_BIAS_BACKPLANE_RESISTANCE_OHMS = float(configfile['TES']['TES_BIAS_BACKPLANE_RESISTANCE_OHMS'])
R_tot = TES_BIAS_BACKPLANE_RESISTANCE_OHMS + np.sum(TES_BC_RESISTANCE_OHM) + R_cable
V_Johnson_TES_Bias_R = np.sqrt(4*kB*T_warm*(TES_BIAS_BACKPLANE_RESISTANCE_OHMS + np.sum(TES_BC_RESISTANCE_OHM)))
R_TES = float(configfile['TES']['TES_R_OP'])
R_SHUNT = float(configfile['TES']['TES_R_SHUNT'])
L_NYQ = float(configfile['TES']['L_NYQUIST'])
V_Johnson_TES_Bias_Cable = np.sqrt(4*kB*R_cable*kTint/(kint))
I_Johnson_TES_Bias_Cable = (V_Johnson_TES_Bias_Cable+V_Johnson_TES_Bias_R)/R_tot
I_Johnson_TES_In = I_Johnson_TES_Bias_Cable/(1 + (R_TES/R_SHUNT))
V_Johnson_Out = I_Johnson_TES_In * dV_SSA_dI_SSAin * dI_SSAin_dI_SQ1in
if configfile['PREAMPADC']['CIRCUIT_TYPE']=='S4':
R_Filt = np.array(json.loads(configfile.get("TES","TES_BIAS_LPF_OHM")))
C_Filt = np.array(json.loads(configfile.get("TES","TES_BIAS_LPF_FARAD")))
f_rolloff = 1/(2*np.pi*R_Filt*C_Filt)
else:
C_filt = np.array(json.loads(configfile.get("TES","TES_BIAS_LPF_FARAD")))
f_rolloff = 1/(2*np.pi*TES_BC_RESISTANCE_OHM*C_filt)
f_cable = 1/(2*np.pi*R_cable*C_cable)
f_rolloff = np.append(f_rolloff, f_cable)
f_nyquist = R_cable/(2*np.pi*L_NYQ)
f_rolloff = np.append(f_rolloff, f_nyquist)
print(noisetag)
print('Rolloff freq:')
print(f_rolloff)
n_pole = 1
return(V_Johnson_Out, f_rolloff, 0, n_pole)
if noisetag == 'ssa_offset_bias_johnson':
#We are neglecting the Johnson noise of the SA Bias resistor since it is much larger than the cold resistance (15 kΩ >> 500 Ω) and the effective Johnson noise comes from those two resistors in parallel, so the smaller will thoroughly dominate.
T_warm = 300
R_Offset = float(configfile['PREAMPADC']['SSA_OFFSET_GROUND'])
R_Gain = float(configfile['PREAMPADC']['SSA_AMP_GAIN_RESISTOR'])
R_Offset_Bias = float(configfile['PREAMPADC']['SA_OFFSET_BIAS_RESISTOR'])
R_Offset_Parallel = R_Offset*R_Offset_Bias/(R_Offset + R_Offset_Bias)
V2_Johnson_offset = 4*kB*T_warm*R_Offset_Parallel*(R_Gain/(R_Gain+R_Offset_Parallel))**2
V2_Johnson_gain = 4*kB*T_warm*R_Gain*(R_Offset_Parallel/(R_Gain+R_Offset_Parallel))**2
V_Johnson = np.sqrt(V2_Johnson_offset + V2_Johnson_gain)
f_rolloff = 1e15#Essentially infinite, this is a resistor directly to ground. Will be filtered by room temp
n_pole = 1
return(V_Johnson, f_rolloff, 0, n_pole)
if noisetag == 'ssa_amplifier':
v_noise = float(configfile['PREAMPADC']['SA_AMPLIFIER_NOISE_VOLTS'])
i_noise = float(configfile['PREAMPADC']['SA_AMPLIFIER_NOISE_AMPS'])
R_bias = float(configfile['SSA']['SSA_BIAS_RC_RESISTANCE_OHMS'])
R_cable = float(squidfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_RESISTANCE_OHMS'])
R_SSA = float(configfile['SSA']['SSA_R_DYN'])
C_cable = float(configfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_CAPACITANCE_FARAD'])
R_total = R_cable + R_SSA
R_Offset = float(configfile['PREAMPADC']['SSA_OFFSET_GROUND'])
R_Gain = float(configfile['PREAMPADC']['SSA_AMP_GAIN_RESISTOR'])
R_Offset_Bias = float(configfile['PREAMPADC']['SA_OFFSET_BIAS_RESISTOR'])
R_Offset_Parallel = R_Offset*R_Offset_Bias/(R_Offset + R_Offset_Bias)
v_current_plus = i_noise * R_total
v_current_minus = i_noise * R_Offset_Parallel * R_Gain / (R_Offset_Parallel + R_Gain)
v_tot = np.sqrt(v_noise**2 + v_current_plus**2 + v_current_minus**2)
f_rolloff = float(configfile['PREAMPADC']['AMPLIFIER_ROLLOFF'])#solely limited by room temp bandwidth
corner_freq = float(configfile['PREAMPADC']['SA_AMPLIFIER_CORNER'])
n_pole = 5
return(v_tot, f_rolloff, corner_freq, n_pole)
if noisetag == 'ssa_bias_dac':
R_bias = float(configfile['SSA']['SSA_BIAS_RC_RESISTANCE_OHMS'])
R_cable = float(squidfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_RESISTANCE_OHMS'])
R_SSA = float(configfile['SSA']['SSA_R_DYN'])
C_cable = float(configfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_CAPACITANCE_FARAD'])
R_total = R_cable + R_bias + R_SSA
v_out = float(configfile['PREAMPADC']['SA_BIAS_AMPLIFIER_NOISE'])*R_cable/R_total
if configfile['PREAMPADC']['CIRCUIT_TYPE']=='S4':
f_rolloff = float(configfile['PREAMPADC']['SA_BIAS_AMPLIFIER_ROLLOFF'])
else:
f_rolloff = 1/(2*np.pi*R_cable*C_cable)
corner_freq = float(configfile['PREAMPADC']['SA_BIAS_AMPLIFIER_CORNER'])
n_pole = 1
return(v_out, f_rolloff, corner_freq, n_pole)
if noisetag == 'ssa_offset_dac':
#While it looks like ssa bias enters here as well in SLAC electronics schematic, this is unpopulated
v_out = float(configfile['PREAMPADC']['SA_OFFSET_AMPLIFIER_NOISE'])*float(configfile['PREAMPADC']['SSA_OFFSET_GROUND'])/(float(configfile['PREAMPADC']['SSA_OFFSET_GROUND']) + float(configfile['PREAMPADC']['SA_OFFSET_BIAS_RESISTOR']))
f_rolloff = float(configfile['PREAMPADC']['SA_OFFSET_AMPLIFIER_ROLLOFF'])
corner_freq = float(configfile['PREAMPADC']['SA_BIAS_AMPLIFIER_CORNER'])
n_pole = 1
return(v_out, f_rolloff, corner_freq, n_pole)
if noisetag == 'ssa_fb_amp_in':
SSA_FB_BACKPLANE_RESISTANCE_OHMS = float(configfile['SSA']['SSA_FB_BACKPLANE_RESISTANCE_OHMS'])
SSA_FB_BC_RESISTANCE_OHM = np.array(json.loads(configfile.get("SSA","SSA_FB_BC_RESISTANCE_OHM")))
R_cable = float(squidfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_RESISTANCE_OHMS'])
C_cable = float(configfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_CAPACITANCE_FARAD'])
R_total = SSA_FB_BACKPLANE_RESISTANCE_OHMS + np.sum(SSA_FB_BC_RESISTANCE_OHM) + R_cable
I_SSA_FB = float(configfile['PREAMPADC']['SSA_FB_AMPLIFIER_NOISE'])/R_total
dV_SSA_dI_SSAin = float(squidfile['SSA']['dV_SSA_dI_SSA_IN_UPSLOPE'])
turns_ratio = float(squidfile['SSA']['M_SSA_IN'])/float(squidfile['SSA']['M_SSA_FB'])
v_out = I_SSA_FB * dV_SSA_dI_SSAin/turns_ratio
if configfile['PREAMPADC']['CIRCUIT_TYPE']=='S4':
C_filt = np.array(json.loads(configfile.get("SSA","SSA_FB_LPF_FARAD")))
f_rolloff = 1/(2*np.pi*SSA_FB_BC_RESISTANCE_OHM*C_filt)
f_cable = 1/(2*np.pi*R_cable*C_cable)
f_rolloff = np.append(f_rolloff, f_cable)
else:
f_rolloff = 1/(2*np.pi*R_cable*C_cable)
corner_freq = float(configfile['PREAMPADC']['SSA_FB_AMPLIFIER_CORNER'])
n_pole = 1
return(v_out, f_rolloff, corner_freq, n_pole)
if noisetag == 'sq1_bias_amp_in_rs_closed':
R_SQ1_BIAS_LIST = np.array(json.loads(configfile.get("SQ1","SQ1B_BACKPLANE_RESISTANCE_OHMS")))
if isinstance(R_SQ1_BIAS_LIST, np.ndarray):
R_SQ1_BACKPLANE_BIAS = np.sum(R_SQ1_BIAS_LIST)
else:
R_SQ1_BACKPLANE_BIAS = R_SQ1_BIAS_LIST
R_SQ1_RC_BIAS = float(configfile['SQ1']['SQ1B_BC_RESISTANCE_OHM'])
R_cable = float(squidfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_RESISTANCE_OHMS'])
C_cable = float(configfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_CAPACITANCE_FARAD'])
R_bias = R_SQ1_BACKPLANE_BIAS + R_SQ1_RC_BIAS + R_cable
dV_SSA_dI_SSAin = float(squidfile['SSA']['dV_SSA_dI_SSA_IN_UPSLOPE'])
R_SQ1_Shunt = float(configfile['SQ1']['SQ1_SHUNT_OHM'])
R_SQ1_Para = float(configfile['SQ1']['SQ1_R_par'])
I_SSA_IN = float(configfile['PREAMPADC']['SQ1_BIAS_AMPLIFIER_NOISE'])/(R_bias * (1 + (R_SQ1_Para/R_SQ1_Shunt)))
v_out = I_SSA_IN * dV_SSA_dI_SSAin
if configfile['PREAMPADC']['CIRCUIT_TYPE']=='S4':
C_filt = np.array(json.loads(configfile.get("SQ1","SQ1B_LPF_FARAD")))
f_rolloff = 1/(2*np.pi*R_SQ1_BIAS_LIST*C_filt)
f_cable = 1/(2*np.pi*R_cable*C_cable)
f_rolloff = np.append(f_rolloff, f_cable)
else:
f_rolloff = 1/(2*np.pi*R_cable*C_cable)
L_SSA_in = float(configfile['SSA']['SSA_L_IN_HENRY'])
L_NbTi_cable = float(configfile['CRYOCABLE']['NBTI_ROUNDTRIP_INDUCTANCE_HENRY'])
L_cold = L_SSA_in + L_NbTi_cable
f_inductor = R_cable/(2*np.pi*L_cold)
f_rolloff = np.append(f_rolloff, f_inductor)
corner_freq = float(configfile['PREAMPADC']['SQ1_BIAS_AMPLIFIER_CORNER'])
n_pole = 1
return(v_out, f_rolloff, corner_freq, n_pole)
if noisetag == 'sq1_bias_amp_in_rs_open':
R_SQ1_BIAS_LIST = np.array(json.loads(configfile.get("SQ1","SQ1B_BACKPLANE_RESISTANCE_OHMS")))
if isinstance(R_SQ1_BIAS_LIST, np.ndarray):
R_SQ1_BACKPLANE_BIAS = np.sum(R_SQ1_BIAS_LIST)
else:
R_SQ1_BACKPLANE_BIAS = R_SQ1_BIAS_LIST
R_SQ1_RC_BIAS = float(configfile['SQ1']['SQ1B_BC_RESISTANCE_OHM'])
R_cable = float(squidfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_RESISTANCE_OHMS'])
C_cable = float(configfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_CAPACITANCE_FARAD'])
R_bias = R_SQ1_BACKPLANE_BIAS + R_SQ1_RC_BIAS + R_cable
#Dynamic resistance, shunt resistance, parasitic resistance are all 3 orders of magnitude smaller than the backplane resistors, so not going to trouble with the voltage divider.
dV_SSA_dI_SSAin = float(squidfile['SSA']['dV_SSA_dI_SSA_IN_UPSLOPE'])
R_SQ1_Shunt = float(configfile['SQ1']['SQ1_SHUNT_OHM'])
R_SQ1_Dyn = float(squidfile['SQ1']['R_DYN_OPERATING_UPSLOPE'])
R_SQ1_Para = float(configfile['SQ1']['SQ1_R_par'])
R_SQ1_Series = float(squidfile['SQ1']['R_SERIES'])
R_IN_LEG = R_SQ1_Dyn + R_SQ1_Para + R_SQ1_Series
I_SSA_IN = float(configfile['PREAMPADC']['SQ1_BIAS_AMPLIFIER_NOISE'])/(R_bias * (1 + (R_IN_LEG/R_SQ1_Shunt)))
v_out = I_SSA_IN * dV_SSA_dI_SSAin
if configfile['PREAMPADC']['CIRCUIT_TYPE']=='S4':
C_filt = np.array(json.loads(configfile.get("SQ1","SQ1B_LPF_FARAD")))
f_rolloff = 1/(2*np.pi*R_SQ1_BIAS_LIST*C_filt)
f_cable = 1/(2*np.pi*R_cable*C_cable)
f_rolloff = np.append(f_rolloff, f_cable)
else:
f_rolloff = 1/(2*np.pi*R_cable*C_cable)
L_SSA_in = float(configfile['SSA']['SSA_L_IN_HENRY'])
L_NbTi_cable = float(configfile['CRYOCABLE']['NBTI_ROUNDTRIP_INDUCTANCE_HENRY'])
L_SQ1 = float(squidfile['SQ1']['L_SQ1'])
L_cold = L_SSA_in + L_NbTi_cable + L_SQ1
f_inductor = R_cable/(2*np.pi*L_cold)
f_rolloff = np.append(f_rolloff, f_inductor)
corner_freq = float(configfile['PREAMPADC']['SQ1_BIAS_AMPLIFIER_CORNER'])
n_pole = 1
return(v_out, f_rolloff, corner_freq, n_pole)
if noisetag == 'sq1_fb_amp_in':
turns_ratio = float(squidfile['SQ1']['M_SQ1_IN'])/float(squidfile['SQ1']['M_SQ1_FB'])
dV_SSA_dI_SSAin = float(squidfile['SSA']['dV_SSA_dI_SSA_IN_UPSLOPE'])
dI_SSAin_dI_SQ1in = float(squidfile['SQ1']['dI_SSA_IN_dI_SQ1_IN_upslope'])
R_SQ1_FB_BACKPLANE = float(configfile['SQ1']['SQ1_FB_BACKPLANE_RESISTANCE_OHMS'])
R_Cable = float(squidfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_RESISTANCE_OHMS'])
C_Cable = float(configfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_CAPACITANCE_FARAD'])
R_Filt = np.array(json.loads(configfile.get("SQ1","SQ1_FB_LPF_OHM")))
C_Filt = np.array(json.loads(configfile.get("SQ1","SQ1_FB_LPF_FARAD")))
if isinstance(R_Filt, np.ndarray):
R_Tot = np.sum(R_Filt) + R_SQ1_FB_BACKPLANE + R_Cable
else:
R_Tot = R_SQ1_FB_BACKPLANE + R_Filt + R_Cable
if configfile['PREAMPADC']['CIRCUIT_TYPE']=='S4':
I_SQ1FB = float(configfile['PREAMPADC']['SQ1_FB_AMPLIFIER_NOISE'])/R_Tot
else:
R_33 = float(configfile['SQ1']['SQ1_FB_RC_R33_OHM'])
I_SQ1FB = float(configfile['PREAMPADC']['SQ1_FB_AMPLIFIER_NOISE_AMPS'])*R_33/(R_33 + R_Tot)
v_out = I_SQ1FB * dI_SSAin_dI_SQ1in * dV_SSA_dI_SSAin / turns_ratio
f_filt = 1/(2*np.pi*R_Filt*C_Filt)
f_cable = 1/(2*np.pi*R_Cable*C_Cable)
f_rolloff = np.append(f_filt, f_cable)
corner_freq = float(configfile['PREAMPADC']['SQ1_FB_AMPLIFIER_NOISE_CORNER'])
n_pole = 1
return(v_out, f_rolloff, corner_freq, n_pole)
if noisetag == 'tes_bias_amp_in':
TES_BC_RESISTANCE_OHM = np.array(json.loads(configfile.get("TES","TES_BIAS_BC_RESISTANCE_OHM")))
R_cable = float(squidfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_RESISTANCE_OHMS'])
C_cable = float(configfile['CRYOCABLE']['CRYOCABLE_ROUNDTRIP_CAPACITANCE_FARAD'])
R_TES = float(configfile['TES']['TES_R_OP'])
R_SHUNT = float(configfile['TES']['TES_R_SHUNT'])
L_NYQ = float(configfile['TES']['L_NYQUIST'])
dV_SSA_dI_SSAin = float(squidfile['SSA']['dV_SSA_dI_SSA_IN_UPSLOPE'])
dI_SSAin_dI_SQ1in = float(squidfile['SQ1']['dI_SSA_IN_dI_SQ1_IN_upslope'])
if configfile['PREAMPADC']['CIRCUIT_TYPE']=='S4':
I_TES_BIAS = 0.5*float(configfile['PREAMPADC']['TES_BIAS_AMPLIFIER_NOISE'])/TES_BC_RESISTANCE_OHM
else:
TES_BIAS_BACKPLANE_RESISTANCE_OHMS = float(configfile['TES']['TES_BIAS_BACKPLANE_RESISTANCE_OHMS'])
R_total = TES_BIAS_BACKPLANE_RESISTANCE_OHMS + np.sum(TES_BC_RESISTANCE_OHM) + R_cable
I_TES_BIAS = float(configfile['PREAMPADC']['TES_BIAS_AMPLIFIER_NOISE_AMPS'])/R_total
I_TES = I_TES_BIAS/(1 + (R_TES/R_SHUNT))
v_out = I_TES * dV_SSA_dI_SSAin * dI_SSAin_dI_SQ1in
if configfile['PREAMPADC']['CIRCUIT_TYPE']=='S4':
R_Filt = np.array(json.loads(configfile.get("TES","TES_BIAS_LPF_OHM")))
C_Filt = np.array(json.loads(configfile.get("TES","TES_BIAS_LPF_FARAD")))
f_filt = 1/(2*np.pi*R_Filt*C_Filt)
amp_rolloff = float(configfile['PREAMPADC']['TES_BIAS_AMPLIFIER_NOISE_ROLLOFF'])
f_rolloff = np.append(f_filt, amp_rolloff)
else:
C_filt = np.array(json.loads(configfile.get("TES","TES_BIAS_LPF_FARAD")))
f_rolloff = 1/(2*np.pi*TES_BC_RESISTANCE_OHM*C_filt)
f_cable = 1/(2*np.pi*R_cable*C_cable)
f_rolloff = np.append(f_rolloff, f_cable)
f_nyquist = (R_TES + R_SHUNT)/(2*np.pi*L_NYQ)
f_rolloff = np.append(f_rolloff, f_nyquist)
corner_freq = float(configfile['PREAMPADC']['TES_BIAS_AMPLIFIER_NOISE_CORNER'])
n_pole = 1
return(v_out, f_rolloff, corner_freq, n_pole)
else:
print('%s is not a valid tag' %noisetag)
def full_system_noise(noise_list, sample_tag, configfilename, squidfilename, figure_title, plot_tag):
configfile = configparser.ConfigParser()
configfile.read(configfilename)
if sample_tag == 'full bandwidth':
adc_freq = float(configfile['PREAMPADC']['ADC_FREQ'])
f_grid = np.logspace(1, np.log10(adc_freq/2), 32768)
elif sample_tag == 'multiplexing':
num_array_visits = int(1e4)
num_downsamples = int(configfile['PREAMPADC']['NUM_SAMPLES'])
adc_freq = float(configfile['PREAMPADC']['ADC_FREQ'])
row_len = int(configfile['PREAMPADC']['ROW_LEN'])
num_rows = int(configfile['PREAMPADC']['NUM_ROWS'])
sampling_freq = adc_freq/(row_len*num_rows)
f_grid = np.linspace(0.1, sampling_freq/2, 32768)
v_total = np.zeros_like(f_grid)
f_amp_rolloff = float(configfile['PREAMPADC']['AMPLIFIER_ROLLOFF'])
f_amp_poles = float(configfile['PREAMPADC']['AMPLIFIER_POLES'])
for noise_source in noise_list:
noise_level, noise_rolloff, corner_freq, n_pole = noise_output(noise_source, configfilename, squidfilename)
if sample_tag == 'full bandwidth':
v_grid = noise_level * np.ones(np.shape(f_grid))
if isinstance(noise_rolloff, np.ndarray):
for f in noise_rolloff:
v_grid = v_grid*Butterworth_Transfer_Function(f_grid, f, 1)
v_grid = v_grid*Butterworth_Transfer_Function(f_grid, f_amp_rolloff, f_amp_poles)
else:
v_grid = noise_level*Butterworth_Transfer_Function(f_grid, noise_rolloff, n_pole)*Butterworth_Transfer_Function(f_grid, f_amp_rolloff, f_amp_poles)
v_total = np.vstack((v_total, v_grid))
v_total[0, :] = np.sqrt(np.square(v_total[0, :]) + np.square(v_grid))
elif sample_tag == 'multiplexing':
if noise_rolloff < f_grid[-1]:
#If the noise rolls off within the multiplexed band, we'll trust that little is aliased and save the computation
v_grid = noise_level*Butterworth_Transfer_Function(f_grid, noise_rolloff, n_pole)*Butterworth_Transfer_Function(f_grid, f_amp_rolloff, f_amp_poles)
v_total = np.vstack((v_total, v_grid))
v_total[0, :] = np.sqrt(np.square(v_total[0, :]) + np.square(v_grid))
else:
v_aliased, v_noise_1f, f_downsampled, v_spectrum = aliased_noise(num_array_visits, num_downsamples, adc_freq, row_len, num_rows, noise_rolloff, n_pole, f_amp_rolloff, f_amp_poles, False, noise_level, corner_freq, 32)
v_grid = v_noise_1f/np.sqrt(f_grid/0.1) + v_aliased
v_total = np.vstack((v_total, v_grid))
v_total[0, :] = np.sqrt(np.square(v_total[0, :]) + np.square(v_grid))
else:
print('Check your sampling tag')
if plot_tag:
plt.figure()
plt.loglog(f_grid, v_total[0, :], label = 'Total Noise')
for i, noise_source in enumerate(noise_list):
plt.loglog(f_grid, v_total[i+1, :], label=noise_source)
plt.xlabel('Frequency [Hz]')
plt.ylabel('Voltage Noise [V/rt(Hz)]')
plt.title(figure_title)
plt.grid(True, which = 'both')
plt.legend(loc='best')
plt.show()
return f_grid, v_total