-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathpetrinet.py
97 lines (82 loc) · 3.33 KB
/
petrinet.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
# superclass for all PN nodes
class Node:
def __init__(self, id, name):
self.id = id
self.name = name
# references to in- and outgoing arcs (added later)
self.in_arcs = []
self.out_arcs = []
def __str__(self):
return self.name
def print(self):
in_arcs = ""
for a in self.in_arcs:
in_arcs += f"{a} "
out_arcs = ""
for a in self.out_arcs:
out_arcs += f"{a} "
print(f"{self} - In: {in_arcs}, Out: {out_arcs}")
class Place(Node):
def __init__(self, id, name):
Node.__init__(self, id, name)
# firing weights of connected, outgoing immediate transitions
self.probabilities = []
# return normalized firing weights as string (eg, "0.3 0.7")
def str_probabilities(self):
sum_prob = sum(self.probabilities)
str_prob = ""
for prob in self.probabilities:
str_prob += str(prob / sum_prob) + " "
return str_prob[:-1] # remove trailing space
class Transition(Node):
# calculate and return coefficients based on in_arcs and out_arcs
# currently only supports simple factors (no constants) and simply adds up multiple inputs (without weights)
def coeffs(self):
coeffs = ""
# remove all "x.size*" to only have the factors remaining
for o_arc in self.out_arcs:
coeff = o_arc.inscription.replace("*","")
for i_arc in self.in_arcs:
coeff = coeff.replace(f"{i_arc.inscription}.size", "")
# the result should be either the factor (eg, "1.5") or a simple input-variable (eg, "x") if the size doesn't change
try: # simple factor, eg "1.0"
float(coeff)
coeffs += coeff + " "
except ValueError: # variable name (eg "x") or sum of inputs (eg, "+") -> keep same size (= factor 1)
coeffs += "1 "
return coeffs[:-1] # remove trailing space
class TimedTransition(Transition):
def __init__(self, id, name, timing):
Transition.__init__(self, id, name)
self.timing = TimedTransition.timenet2omnetpp_timing(timing)
# convert TimeNet's timing to Omnet++'s timing (eg, EXP(1) to exponential(1s))
@staticmethod
def timenet2omnetpp_timing(timenet_timing):
if timenet_timing.startswith("EXP"):
mean = float(timenet_timing[4:-1])
return f"exponential({mean}s)"
elif timenet_timing.startswith("UNI"):
params = timenet_timing[4:-1].split(", ")
a = float(params[0])
b = float(params[1])
return f"uniform({a}s, {b}s)"
elif timenet_timing[0].isdigit():
return timenet_timing + "s"
else:
raise ValueError("Unknown timing " + timenet_timing)
class ImmediateTransition(Transition):
def __init__(self, id, name, weight):
Transition.__init__(self, id, name)
self.weight = float(weight)
class Arc:
def __init__(self, src, dest, inscription):
self.src = src
self.dest = dest
# cut off "new({size=" and "})" if it exists
if inscription.startswith("new"):
self.inscription = inscription[10:-2]
else:
self.inscription = inscription
def __str__(self):
# return f"({self.src}, {self.dest})"
return self.inscription