diff --git a/demos/reanalysis-forced.ipynb b/demos/reanalysis-forced.ipynb index 2fd34621..a8195511 100644 --- a/demos/reanalysis-forced.ipynb +++ b/demos/reanalysis-forced.ipynb @@ -44,7 +44,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, "metadata": {}, "outputs": [], "source": [ @@ -85,7 +85,7 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, "metadata": {}, "outputs": [], "source": [ @@ -106,7 +106,7 @@ "toolpath_dir = Path(\"PATH_TO_FRE_TOOLS\")\n", "\n", "## Path to where your raw ocean forcing files are stored\n", - "glorys_path = Path(\"PATH_TO_GLORYS_DATA\" )\n", + "glorys_path = Path(\"PATH_TO_GLORYS_DATA\")\n", "\n", "## if directories don't exist, create them\n", "for path in (run_dir, glorys_path, input_dir):\n", @@ -232,35 +232,14 @@ }, { "cell_type": "code", - "execution_count": 8, + "execution_count": null, "metadata": { "tags": [ "nbval-ignore-output", "nbval-skip" ] }, - "outputs": [ - { - "data": { - "text/plain": [ - "" - ] - }, - "execution_count": 8, - "metadata": {}, - "output_type": "execute_result" - }, - { - "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAkQAAAHFCAYAAAAT5Oa6AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/H5lhTAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9e7wdVX02/szMnn0715wkJyeBEKJcihAsRYGAFixCoCJSqbTFXwRE5PMqIC/gXUu0FipaLwVr1deCFXnpR6tV7Psi0BfTYkAgSgVFFAw0gdxIcu5n32bm98fMmvWs7LWy9z5nn31OkvX4ObIye2bN2rNn1nzX9/l+n68TRVEECwsLCwsLC4uDGO5cD8DCwsLCwsLCYq5hDSILCwsLCwuLgx7WILKwsLCwsLA46GENIgsLCwsLC4uDHtYgsrCwsLCwsDjoYQ0iCwsLCwsLi4Me1iCysLCwsLCwOOhhDSILCwsLCwuLgx7WILKwsLCwsLA46GENIouDHuvWrYPjOB0959jYGD7wgQ/g7LPPxuLFi+E4DtatW6fd96GHHsK73vUunHjiicjlcnAcB88//3xL53vggQewevVqFItFLFq0CJdeeil27NhRt99vfvMbXHjhhViwYAGKxSJOPvlk/OAHP2jqHJdeeikcx4HjODjuuONaGl+7sGHDBqxbtw7Dw8Nzcn4A+P3f//30Opx33nlzNg4LC4vWYA0ii4Me73rXu/Dwww939Jy7du3CV7/6VZTLZVxwwQX73Pff//3f8cADD+Cwww7Dqaee2vK51q9fj3PPPRdLlizB97//fXzxi1/EAw88gDPPPBPlcjnd7/nnn8fq1avxzDPP4B/+4R/w7W9/G4sXL8YFF1yAf/mXf2nqXENDQ3j44Ydx1113tTzOdmDDhg34xCc+MacG0Te/+U08/PDDGBoamrMxWFhYtI7MXA/AwmKuceihh+LQQw/t6DlXrFiBPXv2wHEcvPzyy/hf/+t/Gff9+Mc/jhtvvBEA8NnPfhY//vGPWzrX+9//fhx11FH4zne+g0wmfuRXrlyJ0047Df/4j/+I//E//gcA4G/+5m8wOTmJH/3oRzjkkEMAAOeccw5WrVqF//k//yf+5E/+BK677zVULpfDKaec0tL49gdMTk6iWCw2te+qVasAxNfCwsJi/4H1EFkc0BDUhe5P0E5zQZmJMTSDRkbIvvDiiy/isccew9q1a1NjCABOPfVUHHXUUfje976XbvvJT36CV7/61akxBACe5+Hcc8/F5s2b8eijj057HI7j4KqrrsLtt9+Oo48+GoVCAa95zWvwyCOPIIoifOYzn8HKlSvR3d2NP/qjP8Kzzz5b14fwavX29qJYLOK0007Dv//7v6efr1u3Du9///sBxAafuMZsQP7zP/8zVq9eja6uLnR3d2PNmjX4+c9/rpzn0ksvRXd3N5588kmcffbZ6OnpwZlnngkA+PnPf47zzjsPg4ODyOVyWLZsGd70pjdhy5Yt0742FhYW8wPWQ2RxQGNvKmxqagpr165FEAQYGBhoqa8oihAEQVP7svExl3jqqacAAMcff3zdZ8cffzx+8pOfpP+uVCraayI8Hb/4xS9m5P354Q9/iJ///Of4m7/5GziOgw9+8IN405vehEsuuQS/+93vcNttt2FkZATXXXcdLrzwQjzxxBOp0XjnnXfiHe94B97ylrfgG9/4Bnzfx1e+8hWsWbMGP/rRj3DmmWfiXe96F3bv3o1bb70V3/3ud7F06VIAwKte9SoAwE033YSPfexjuOyyy/Cxj30MlUoFn/nMZ/D6178ejz76aLqfuBbnn38+rrzySnzoQx9CrVbDxMQEzjrrLKxcuRJf+tKXsGTJEmzbtg0PPvggxsbGpn1dLCws5gfmx6xtYTFL4Bd4EAS48MILMTIygvXr16O3t7elvr7xjW/gsssua2rfKIpa6nu2sGvXLgDQGjoDAwPp50BsOPz4xz/G+Pg4uru70+0PPfSQ0td0US6Xcd9996GrqwtA7DW64IIL8OCDD+JnP/tZavzs3LkT1157LZ566imsWrUKk5OTeN/73ofzzjtP8Wj98R//Mf7gD/4AH/nIR/DTn/4Uhx56KA477DAAwAknnIDDDz883Xfz5s248cYbcdVVV+Hv/u7v0u1nnXUWjjzySHziE5/AP//zP6fbq9Uq/vIv/1L5vTdu3Ihdu3bh61//Ot7ylrek2y+66KIZXRcLC4v5AWsQWRw0uOqqq/Bv//ZvuOeee/AHf/AHLR//5je/GY899tgsjGz2YaLnePtVV12F73//+3jHO96Bz372s+jq6sJtt92GDRs2AJgZdQcAb3jDG1JjCACOOeYYAMC5556rjENsf+GFF7Bq1Sps2LABu3fvxiWXXIJarab0ec455+CWW27BxMSE0vfe+NGPfoRarYZ3vOMdSh/5fB6nn346HnzwwbpjLrzwQuXfRxxxBBYsWIAPfvCD2Lp1K/7wD/9Q8SpZWFjs37AGkcVBgU996lP4h3/4B3z961/HOeecM60+BgYG0NfX1+aRzS4WLlwIQO/d2b17t+I5OvPMM3H77bfj+uuvxytf+UoAsdfor/7qr/CRj3xEiS2aDvb2UmWz2X1uL5VKAIDt27cDAP70T//U2Pfu3bv3aRCJPl772tdqP9/b2CsWi3UexL6+Pqxfvx5//dd/jY985CPYs2cPli5diiuuuAIf+9jH4Pu+8fwWFhbzH9Ygsjjgcccdd+DjH/841q1bh3e+853T7md/pMyEHtCTTz6JP/7jP1Y+e/LJJ+v0gi655BK8/e1vx29/+1v4vo8jjjgCN998MxzHwetf//qOjZuxaNEiAMCtt95qjGFasmRJU3185zvfwYoVKxqe0+RRW7VqFe6++25EUYRf/OIXuOOOO/DJT34ShUIBH/rQhxr2a2FhMX9hDSKLAxr33nsvrrjiCrzzne9MU9eni/2RMjvkkENw0kkn4c4778QNN9wAz/MAAI888gieeeYZXHvttXXHZDKZlLYaGRnBV7/6VbzlLW9pypCYDZx22mno7+/Hr371K1x11VX73FcEgE9NTSnb16xZg0wmg+eee66OCpsOHMfBq1/9anz+85/HHXfcgZ/97Gcz7tPCwmJuYQ0iiwMWmzZtwtve9ja84hWvwGWXXYZHHnlE+fyEE05oSStm4cKFKQXVDvzf//t/MTExkWYo/epXv8J3vvMdAHHAsNC92blzJ9avXw8g9uqIYxcvXozFixfj9NNPT/vMZDI4/fTTlXT0T3/60zjrrLPwtre9De95z3uwY8cOfOhDH8Jxxx2neLx27NiBv/3bv8Vpp52Gnp4e/PrXv8Ytt9wC13XxpS99qW3fu1V0d3fj1ltvxSWXXILdu3fjT//0TzE4OIidO3fiv/7rv7Bz5058+ctfBiA1gL74xS/ikksuge/7OProo3H44Yfjk5/8JD760Y/id7/7Hc455xwsWLAA27dvx6OPPoquri584hOf2Oc4fvjDH+Lv//7vccEFF+AVr3gFoijCd7/7XQwPD+Oss86a9etgYWExy4gsLA5QPPjggxEA49+mTZuiKIqiG2+8MZqLR2HFihUNx9boe5x++ulKn7ptURRF9913X3TKKadE+Xw+GhgYiN7xjndE27dvV/bZtWtXdPbZZ0eLFy+OfN+PDjvssOjqq6+Odu7c2dT3ueSSS6IVK1ZoPwMQvfe971W2bdq0KQIQfeYzn1G2i+/77W9/W9m+fv366E1velM0MDAQ+b4fHXLIIdGb3vSmuv0+/OEPR8uWLYtc140ARA8++GD62b/+679Gb3jDG6Le3t4ol8tFK1asiP70T/80euCBB5Tv0dXVVfcdfv3rX0d/8Rd/Eb3yla+MCoVC1NfXF5100knRHXfcof3OK1asiN70pjdpP7OwsJh/cKJongQ7WFhY7Ne49NJL8eMf/xjPPvssHMdJ6bmDDUEQIIoiHHHEETjuuOPwwx/+cK6HZGFh0QSsUrWFhUXb8MILL8D3fbz61a+e66HMGU488UT4vo8XXnhhrodiYWHRAqyHyMLCoi14/vnn8fLLLwMACoUCjj322Dke0dzgV7/6FSYnJwEA/f39OOKII+Z4RBYWFs3AGkQWFhYWFhYWBz0sZWZhYWFhYWFx0MMaRBYWFhYWFhYHPaxBZGFhYWFhYXHQwwozAgjDEC+99BJ6enqMkv0WFhYWFhZAXJpnbGwMy5Ytm3HR432hVCqhUqnMuJ9sNot8Pt+GER3YsAYRgJdeegnLly+f62FYWFhYWOxH2Lx5Mw499NBZ6btUKmHlim5s2xHMuK+hoSFs2rTJGkUNYA0iAD09PQCA13tvQcaZhYrVUVi/zdGvKhx33x6qKLRJgQcsdPfJ3jDcN7o+/nX37TMcEPCW/ktb2r/R/Tvvobu+/Ls0uv5zAOWas4ebtjsZOdU7hQIAIFwqy9CUFxfTdq0gv2OlR7ar3bK/IBv/N6TpMqS3ScSXyXBLpPuTfmfoy/ktou0O/wRV2aFbrt+31it3jrpradvvlp6WEw/ZkrYXZOK6d+VQdvLrkcG0vWbpr9L2osw4AGBqvIYPnv54+u6YDVQqFWzbEeCFjYejt2f6993oWIgVJz6PSqViDaIGsAYRZGXrjOPPjkGE5AGdphGkoEXxX2tA7Udoiy0hXwYXLrgibd8f/PO0ejM9D/u94dMKHMNDN0+MIyPNz1ZJQEaEmPap/q03IttlPyv7Dvm7y/7E1hp9zEZJQCUC3ap+eLVknzAn5yhmnyJ6O4U+GTk8orH4pHwF3DxZT73SCFq4sJy2D184mbZ9J/bALPKH023HLdlNn8szOoiNSSeMDa1OhFh09zjo7pn+ecL2TCwHBaxB1EaYXhJRWD9xduqFwudpZByZx2+Nqv0G9JJ23CY8Ti11bSdWBc149ARm0Xji57Op36iQeAmmSukmNyutmcyUNIKDvBx3piTPU0tesvwCCdhbRG2XQmDYyBFeH4eMNbZ2ogz9gy5fdpG05CpebKB443KHiLxMflbSTSt698jtjtyec2PjxiU3VNGRVlw1mtsSNEEUIpjBFBy0cp8e5LAGkYWFhYWFxTxFiAghpm8RzeTYgw3WIGoA3YrL5DGJAgp+06wI5/sKu+WVpsW8xn3Vu6d13Nn+n6dtex+0CaZVequeo2jf9Lv6DPM5pZcjfDmmg9yebrlvRc5dLrW9qnxFZKZo3ktuixrRMRGHLxFN5lE7pCGJ2r/M7DmG2KPII8rPJYqtJ3Y/hRXi6Apy/At6JDW2suvltO27cp+8idMT+zr1Qc01zTaL/R/zgwSfJ3Bcp+4vCqM6A4g/RxSmf2Jf0/7zHbrvbemy/RdnZy+Wf/6fa/8s5hg0fzT1pzvO2DU9w/wXxX9RuZL+iW2IIriVIP3zSvLPrUXyrxr/efTnhEj//HH559Toj/aB+DON36E/N0r/sn4t/Vu59GWsXPoyomyU/mW7K+nf0Qt2pH/dXjn9y7nV9M91QoUum28I2/C/VrBu3To4jqP8DQ0NpZ9HUYR169Zh2bJlKBQKOOOMM/DLX/5S6aNcLuPqq6/GokWL0NXVhfPPPx9btmxR9tmzZw/Wrl2Lvr4+9PX1Ye3atRgeHp72dWoHrEFkYWFhYWExTxFE0Yz/WsWxxx6LrVu3pn9PPvlk+tktt9yCz33uc7jtttvw2GOPYWhoCGeddRbGxsbSfa699lp873vfw913342HHnoI4+PjOO+88xAQi3LxxRfjiSeewL333ot7770XTzzxBNauXTuzizVDWMqsARp5dhyPc0P3b8rJeoMOYBAXwdSu4iUS+5honP0pOLMVypr31XxH5bmYj9egGTqO90mSPJwsRT6T+J9ToSyzqtzHrdH8FjrJf0Gf85hoGHz5mB4L6z+vZeU/OPuMs2vLROP155LA8KI8eVClAHGixjg42lOkFOrpr0DJqAvrtgcHuC8hk8koXiGBKIrwhS98AR/96Efx1re+FQDwjW98A0uWLMFdd92FK6+8EiMjI/j617+Ob37zm3jjG98IALjzzjuxfPlyPPDAA1izZg2efvpp3HvvvXjkkUdw8sknAwC+9rWvYfXq1XjmmWdw9NFHd+7LEqxB1Ebsj0aQxcEHxYhv6cAmXgINYlw6ZlDoDBtj2Ed740EaXd+mFh7TvU4GI4gzXYWKQDg2nm5zacxORRoXDo3VrZJGUNIdxw15Ff33Cj1D9qrmMkX69SUiihuK6KQLsnGMUN+CiXRblbQAVhRk+nwQ6e/JUGwnwyikc4QarRP+fLbRrqDq0dFRZXsul0Mul9Mdgt/+9rdYtmwZcrkcTj75ZNx00014xStegU2bNmHbtm04++yzlX5OP/10bNiwAVdeeSU2btyIarWq7LNs2TIcd9xx2LBhA9asWYOHH34YfX19qTEEAKeccgr6+vqwYcOGOTOIDmwz18LCwsLCYj9GiAjBDP6EQbR8+fI0Xqevrw8333yz9nwnn3wy/umf/gk/+tGP8LWvfQ3btm3Dqaeeil27dmHbtm0AgCVLlijHLFmyJP1s27ZtyGazWLBgwT73GRwcxN4YHBxM95kLWA/RAQ5Lg1nsC/dV7krbZ2cvnnmHjbxIRg9G/X26v3pclWzTjp98mp6lisy0CvOSMnOr9BvRz5Edj7fXSKcoyJFXhd8sSrYYbU4uk0K7kQp1wDpELElErqOJWjzW1UufT7eV6eSuwt3JE+mCqEPyIHEWGnuDBFUW7oe+hM2bN6O3tzf9t8k7dO6556btVatWYfXq1XjlK1+Jb3zjGzjllFMA1AtSRlHUUKRy7310+zfTz2zCGkQWjdFC6RGL/QttMYLagDk1fhrEEB0QUDLUkmvNgrF5+XJ0ahQMxGUyKIYoCSFStrGxwzSZEjfENo6g7iiUKSiQAUYCi8iTkGJWGm+jlVhk8sS+F9JtkySTbVJpVo2fuD/fkd97rsUYGe2izHp7exWDqFl0dXVh1apV+O1vf4sLLrgAQOzhWbp0abrPjh07Uq/R0NAQKpUK9uzZo3iJduzYgVNPPTXdZ/v27XXn2rlzZ533qZOwbzWL6aFRWnCn+rDYf+G4zf/NJg7We8915F8Ypn/OyIT8q9TkXxClf5HnxNpAEfR/Dv0ROJU+BaXgO5H8gxelf14uSP/6CqX0rz83hf7cFMaDfPrnu7X0z0Wk/0tS7V0nhIcIHiIEcNO/auSlf2Hkpn/l0E//OoW5yDJjlMtlPP3001i6dClWrlyJoaEh3H///ennlUoF69evT42dE088Eb7vK/ts3boVTz31VLrP6tWrMTIygkcffTTd56c//SlGRkbSfeYC1kNkYWFhYWFhAQC44YYb8OY3vxmHHXYYduzYgU996lMYHR3FJZdcAsdxcO211+Kmm27CkUceiSOPPBI33XQTisUiLr449jb39fXh8ssvx/XXX4+FCxdiYGAAN9xwA1atWpVmnR1zzDE455xzcMUVV+ArX/kKAODd7343zjvvvDkLqAasQaTCcWYnO6ZRBe1ZRCtK2/vohA/e974H2yrbwmI/g3j+3Zyc/qOyLHyKQD7DTlchbbs1Sj/PxscqoTg01fB2psy4LUJ9goIh1Z5iiFid2qPOF2XjTLnJQMY9sbK0T1oAOsVpBqfXcwwRw4+Soq6KxsDsooF+ZVPHt4ItW7bgL/7iL/Dyyy9j8eLFOOWUU/DII49gxYoVAIAPfOADmJqawnve8x7s2bMHJ598Mu677z709PSkfXz+859HJpPBRRddhKmpKZx55pm444474FE247e+9S1cc801aTba+eefj9tuu20G33TmcKJohv60AwCjo6Po6+vDH+UuQsbJNj6gHeiQ4TBrQdWzOX4bn2TRLKZbYPVgNtwdjQ4RGUGgRZS7VMZz1Ib60/bUYBynoxg4WQo+pnatINvVoty/moSzVHrJIOqShojTJY2OJYtkyvjSbtk+tDAMACh4UkepyG2qLMsGkS6omg0iLufBgdkiJmlqvIZrTnwEIyMj04rLaQbivfTLpwfR0zP9OXFsLMSxx+yY1bEeKLAeIgsLCwsLi3mKIMIMq923bywHOqxBNFewq1ULi5mjFYp7P33OZq3oMmeT8XXktGeSEHDIi+Qmb9lyt6RAOFA6pCQtE2UmHC8Kk0WdRCF5nKidIe9OoMkiY08Qf24KgxaeIVafZhFH1xZyPWhgDaK5giId34ICsIWFhYRBy0gYDrNmTLSIdo1juhS4cs70mjWRWs7xRFXS5knS6ksLiF6jovGRySDiU4qvwpeD8vJdT567RCVEdpdlXFO3H5fuKHry5CXKAGPjyKM4JJdOKmKSOBW/SteGDSWhSVQKO3cvdTqG6GCGNYgsLCwsLCzmKUI4Wk9YK8dbNAdrEM0VZjFweFbVqa2nymJvtOrtbOf5CPcH/1y37Szvz+iwufMWmc5nGlMnFObVc2uEGwG16Ct5iARl5pXkrqXF3LlsBnnZ1sQyqwKMTVBmpZr0AE3W4uDuJTlZaZ3hmeg18gaVEjLNo0GzV6hKApaij3IHa5lZdA7WIGK4Tsyf82Skm8jmohyGeNFMR/xwJuebSR/TRTPVuy3mDzrwu3A5DJNxcbb/53Xb5mP5D5OxM6dldvg3pHFEVNLDmZSp+f5YEn80JF8hbBxVu2W7Rmn1Eb1xMpPxb+OQGjZYqZqMoHJZGkFBQY5DZItxNhlDl01mAqtTc7wRG1Jin2oH58Qwmtkrx1Zvah7WILKwsLCwsJinCGZImc3k2IMN1iBiOImHaD46IhqsSJTVpWHflgpoWmrMYh7B8ZoIAJ7H9+z+WmQ5YsqMstIiUauMpw/+iizSSNtDEluskSZRiqz8DT1q5/PSU5XNyHEMaqgypsmYBuNg65D2EVtNGWnsORKB12E0H18SFjOFNYgIju/DcXxlEmgr2hxrYTKCGlbbpnPPlywcC4sDBY0WHvPeODLNA0SfZUbiOdIJqSgs26McdVCR/bESdTiQzLMlaXB4eWnsFAtyHu4rTqXtFd170rafxD5x4LBvqGofGmKIdLQaG0ehZt9WqLiZwnqIOgdrEFlYWFhYWMxThJGTpvtP93iL5mANIoKzcAEcNwfseDndFtU0NWt4BdWO1V6bXf33h9/e5+dnuW+T/9hfvUXimtlAa4t5gEZen3nvFTJAoSpd+aw5ouITO6npUeTMsjBLXqECz3XxHOMvkEHS2aycb7vzFMRtqC0mMsCqjhwnB1gzZWaqZSb2MXmFLA4eWIOIEPk+Is8HfLosgn7ikm/TndwMmVutGCK8b1Sr7mNPM9hg4rRk03nmjXE0j2NELA4OmAwbhRLTUNbNPHOdhvJcm55xMoKQaRDHRZfG4XUkl4esUH9+/DxXp+R86/sUp0Sejf6cTGHLeVSw1RUUFokuGiiznLvv+bJKMUZeg7pnnYSlzDoHaxBZWFhYWFjMUwRwFV2k1o+3aBbWICJMLe9Fxs+jGNKK4MVtAJoIVG4R7XChN6LGmuqDxOz2K2+RQKdFAS0OOtxXvTttN/OM8H0onq+58AoZn1Uxviael6hKOkQ1mgOTOdKh7+2SbpA/LncNZKUNJeXMGY9fP5Ent015OejgOD3a7QWN18enuXogQwOhy8GV7auJOJLJE+Shfq5uIuexbYhmGEMU2RiipmENIkKUcRBlHJSW96fb8mMT8WfDI3JHnkeaMWw08S7TzjohA4BjgdphHDVjXIixzjvDCLCCjhazAjZmjNRYo3tsfzXcIwNFmKhWZ2SYD2pk+HC4TnaEYnMmqUZYPondoXijqCavTS2Q+5Zr8lW1pyRPJAyF/qzMQitnSCySjJxuVo7UQGf4WBxcsAaRhYWFhYXFPIWNIeocrEFEiNz4L8zRCs6Z5s3UQgDwvPS2NECrlN+cfsf9dXVu0RpmqdxMM14hXR01hhJUzVme5pPK9ny5f8lb5JTjwObMJI2tX3p0XAqqjkjWzZOOnFSfqNbF3082w0D+oxbI710O5GtrssYSivUYyknPPmeOheTmLyWUWTMeImFcdDIuJ4hcBDPIegus46tpWIOI4ETxX+DTU9nTFX82MppuaiqeqM0TVyfSdo2T9ixNwvM6Nsli/0CnMw/b8Cw0ZRxN83tN+zky1W/kBSFl30a5xIgoy3FmSkR3GRaSlMiV0moOGT5hjdpkBJUq8sCMRwrWmTiGKEtp+f3+pBwycXelSP+606Xjs/GkKFgn+wZznHlmMTuwBpGFhYWFhcU8RQhH8Wi1frx1ETULaxARyn0ealkP/iRp/fixG9jp65Xbdu+pO7ZtmMsq821Go9XqnHiF5gv9YLHfwFQipy1Znq1Sae2A+A6cfWR6Fjioelx6XoQwoxPKeZFpMkPxeQSkSSRqmXmTJA7bQzpElLXmUHZajmqZdfvxiVZ2STHdpVlJk7F3R82F2X+efRtD1DlYg4iQmQyRqYZgUdQoG1+ilm+pVl68B5ARtF/Bql3v/2glu6sdp2umyOw0YTKwFEOpwT3bFhraRJ9xLFVvHEqQmZTGSWZSf20CMmwCpsySr8Lq1V5eTr6OS3Qc0WQebS8Fs/8K49gi0bYZaQcmrEFkYWFhYWExTzHzoGprvDULaxARQt9B6DtwKSy/vCjWvChsb3G1pVvBmVar01zFtkV7qA3Y7wOiLY1m0STme02yVp5FxZvUjOOLAqWd8VjTx8tRuYuq5MNC0kvkd7lXJQor2cedomDs3bIPp1d2MkX6RFymAwnt9sLkwnQTU2bVSH4xf5rlOHhfmWXWuTkvjiGaQXFXS5k1DWsQEULfQZB1FFExwYVHfV3pNiXjjIu/Nposm3nZtmActV2YsQXs90aQxcGBdtPRsymMakDDYs0kHNlMrbWWQP2FY1L12fVjQ0gINAKqarXD8Uks4k1za2ZK7Cu3uTUSY8zLa+1kZJtT8CuJYGOfL/P5/7s8kLYXkWQ2BxfrDCKOK2qkWm0pswMT1iCysLCwsLCYpwhnWMvMZpk1D2sQEYQwoyJXkaysInINu4OL5DEvbWvDiQ2UTaMVbZvpHZP20EHlDTqA6DNTeZhpl42xUDGH90fbdcJave81OkPelOwjzNA9RvdbwKXKRHw4OdkVSSD2LFG9M67NJeizLqoh4jmzd08Lz1ErlNtMYWOIOgdrEBGcUGY+CNRyiZpqr3ySsy/u7OSwZhUdS/W16DhMxo41gtqDRurUHcNcGPGVOJbAmZL59S4VMwupnpiicM0ijMmUyrXMKgN61WrHpUwvyjjrycWxTFsmF6TbXtnd2vwsqLJmUvSFt6WTafshXKtD1CHs30tgCwsLCwsLC4s2wHqICLW8gyjrKDpEjm413U0B1iXpqo0qpEbWyircQJNpV/LKCrDNFXX2c4qo7TiA6DOL9mC+ZHYqmO69qVDyLeorJR6gsJs4MEXAkjZTKSQu3SEcSiGJNUY5CqR29XMo6xCJkh2L82PptiKpQpqoLZ2HxxQozX2IrLVqB2moIHIQRNMPW5jJsQcbrEFEEJQZPyuCCw99cpv2StewOy4nBMUg6gCmG9vDWSn2RW9hMT2Y6OaOG01tMNzVGDNDf2zwlBPKjLLMwhwZVTQ1cW3IahdtT6iyKKM3pEAGUcaX5+EYIqFUPZiVBpE3zfgeNnxMlNicFHedYVB1YCmzpmHfhhYWFhYWFhYHPayHiBB58V9IV8VLFiNBjsTDeijAuiC9RRiVq5R2QOcBUmg0Wr2x14eDPXXZKEr5AQNFd1BllllY7APGZ2EOvatzUgON4SVzSUmKJypzZEFPk+k0AtlDFFE2mZfRB1hnfZmWVkyyy3ZVutNtQzkpzGgCB1DrqLJGn3cSYeTOKIg7tFlmTcMaRIQwAzgZKEUPvUyDmylPyqoFmS4RTUihsLQG0Cxm9/CkzcaRtvaSIZ3fGkH7gI0nsgBwtv/nadskX6AzUOY69qjdi51oKs7uwqAUQax2y+eiNECq1qxdS/FCohhsZrc8rkxDC30ShSTjKE/FXYWhME5VY01xQ2zksIHhJbn+yjYygljtupPp9gKWMusc7MxuYWFhYWFhcdDDeog08Kq0mtIsCCJP2pFBr/QKebvl5WQxsnZ4hhpqx7CQoilhROcZandpA1PfjcZhMS9hRRzNMF6PDnsQjfTZbI5DQ8PU8iTASJ4ghyWJNEPySrQv6RRFJLCYIQ/RYFGW4xiuxCELx/TqBXJboZpM9cl0ooid1SGaWaaYnW2bhzWICE4U/4UeuVaTK1TLu8p+Ah4VJkRfr2yPT1DPyQEmI6kJA0G8mFp+KTXq2xonFvtAM7WxDlZDqZlrMG/EGwlirCbqrJmMszQ8oEZp8opciWyXZN3VtH4ZANSK8Xmyw/q6Zy4ZQYt6pRH0yu6X03bOiWOYip7M8DVmiBm2CxqMj2OarBpSgdgkzb/WwXlz5sKMlghqFvZKWVhYWFhYWBz0sB4iQugldBO5e0MR+FfSHoKgIC9hhqg0l7LPQuEt4lUkr846KWqxDxgDL9tdX03ss796p2yA9UHrFWoK++N93eI9LeY0h4Kq3Zq+RAfPndVuCpROgqYrJ0lverStmLbzeZnBVsjIdrdnmIw1CJSyG1yag4KmExqA9Yv4OA5oziF+ITgdDFSeeS2zg3OOmg6sQUSI3DjtHjV1G6By4p4Up4ZDXHqUlZfT8Vq4CdsdxzPNPozZJ+2e4PfHF4YJ4rscpIbRvEen7jU6z1xnlHUESXHXoIcWfiTAyJQZCUcjw0Vhk0emMiZlTBa+crf2dHlPTso+cXPTfdnrjJ8S6QOEFLPD5/OT1LjApZfELCOEoxhz0zneojlYg8jCwsLCwmKewnqIOgdrEBEiN/EIMVuk8Yzy/RXRiifKaIIOARlgHczianW6NM6B5K0xwApOWswGjCKplOl1QHmLlLki/r5RhmioKk+W+kBp3hxm4w8iotcmpqS36Jgl29P2CX2b0zZ7bHRohibTGQkcSO1RbhafLy9ElRqMwWL/hDWIGA7qlFTFcxNR5hm32U0c+ZTv7rM8qwbtjsFoxgiaS+OnlZR/2h4FgXYf8aJRRCgNxk5HjCAbV3RQoKnYKY1x1CnDqJUU/JksFJxsHEPgBGwU8kqSdjY8Dk413snpkc9OLitjhfKebCsUVwsUEBs+LhkxjWgkl1bCeVeOYywpwFYKqnXHzBZmLsxo56NmYQ0iQuTEf1y6w62KB4dVU8kI4tRbjhuiycFJjKMooOCjuUCjF3WnDSZD2ZD7g7ua7kIpU8JFaw3QpUpbr5HFrCF55vYrr5EyD3DBVtY6M4mdJV0oXnTZ5rk1SoKq/aI0LjKePHct1CtEV8PmX1tsSHlK8VbqO5nblVghavO5+zKTAIBcpoMxRJGjxDRN53iL5mBNRwsLCwsLC4uDHtZDpAPT38lCQlnx0OIozOqptCgrd3J64sKDUYXSLeZjCn4TFFY7vUhRi+KUTXQo2wZvmE0Xt2gVbbln5oJGbcM5jSKNiTfcrcgJy6F9FaV+nk95KnETDy3RU+MUQxT2yQMnA7md0SieyBQ3xG0/ocTYg8ReIa5rJsQbO6tUPTPKzAozNg9rEBHCHODkAJeesSAJBSIaWWkzNRZSUHWUoRT8rJ/8V+buRyWizwzBmXMa8zOH5QcYxjiIWTLMLH1mMdtoB31mrHDfwnPb8r3ONFk+NlCq/dJQqRZ5cSh3rcnMfIR5nuuS48pU8qgqx19ZLDsx0T6hU7+djR3PUIyVt79cjResh+Vkyr9qEHH8klv3+Wxj5tXurUHULOyVsrCwsLCwsDjoYT1EjDD+45g9oQfGLmD+XGlTxllYkFlmTiXJyEioM2Af9NmBhE54uNrsNWqmdlcTnfCBMxyRxbQwn+UkOAuNEgGaqXum9Qx16B5zctIbFPX3AAACX5673MfJJvI41jCMSvX8WUhp968+QqbXH1bck7Y5JZ4zwFxNkVn2JnmGx5aptMHsaNKvvGd6XKmG7TvyC4yFsbur1sG0+wBOS5l1uuMtmoM1iBhJ2j3f68LgIRFT5QEPcvTwlUn/IktuW5GOn6VOFFdvE1Wzkwm+1aKajfZv5kWv1VuZwQtH9NfMC6AVSsFII7QBllazmFeYgRE03fuXtdVEeEBQoLR2mjerNNWVB+UH3gTF8fTGE+mixWPptgplluVInVrVCOKYnvi7mGKJqqHekCpRf37Szjv6zDHPqT9fJzO3LGXWOdgrZWFhYWFhYXHQw3qICGEGcDKAQ3XLnJQy4/24Zg9lMVDGWYZcyUEx7jBTltHYbpcsYpgWfwWmTZ+14jlqWYRN1/d8Cf4mtCJKZ2HRCJ3OSDzb//PG59Z5aJu4v6ftFeJAavJw13pj+oxji70p2Y5kzVf4e2Qf1SVyDlx2SBzEvKx7NN22MCvnwnJAhbPdBurUtLbnIGhGmeIbOPNKeHuE6CKg0melyK9rlzvoIQowM9rLamo3jzl9U9x888147Wtfi56eHgwODuKCCy7AM888o+wTRRHWrVuHZcuWoVAo4IwzzsAvf/lLZZ9yuYyrr74aixYtQldXF84//3xs2bKl5fGE2TjTTJTwSMt4OHFxV/EX+vKP941cJ/0L8p7868og6Mogyso/dHXJP8eRfyY4bt3E57hO+tfK9pmgYR9RKP/mC3hMnR7ffLweFk2hHc/Lvvrdu+8ojNK/JjrRzgkzGJT2z/Ez6R98P/0Lch6CnIfSAjf9C3JI/5xI/oXZKP1zxr30b9vOPmzb2YfnRxakf1unetM/ETvTrhgY14nSP0YIFyFcTIbZ9G+kVpR/QSH9mwxyyV/WcJb2Q1BmM/mzaA5zeqXWr1+P9773vXjkkUdw//33o1ar4eyzz8bEhFwl3HLLLfjc5z6H2267DY899hiGhoZw1llnYWxM8s7XXnstvve97+Huu+/GQw89hPHxcZx33nkIAmsbW1hYWFjsvxDFXWfyZ9Ec5pQyu/fee5V/33777RgcHMTGjRvxh3/4h4iiCF/4whfw0Y9+FG9961sBAN/4xjewZMkS3HXXXbjyyisxMjKCr3/96/jmN7+JN77xjQCAO++8E8uXL8cDDzyANWvWND+gKP7jAGqxOGF3MMdAh1zXjBYNtZBotaT8R9AjXbKZigzgc/t6ZR/DI9S5ZqU4D6kqBaYVK421E0HJRvqsDZhucLrFLGM+Pg8atErFtZpI0VYwZZaRbcEYTS2SY5sapMQDyhyLMvox+/l4Dsx6VGOMM8RMySYNwPQZB1tz2bWMJgibz11uoTyIxYGDefWrj4zExsDAQExAb9q0Cdu2bcPZZ5+d7pPL5XD66adjw4YNuPLKK7Fx40ZUq1Vln2XLluG4447Dhg0btAZRuVxGuSyFEUdHYw47LERAPoJDxgyE3cJi0iyaytu5DikZBoL+dumJ9LIk3EjprMzZR2Hn6uW0jFZTy00FWzuAljLVmqiHpoPNQpsjtNkImjWDo9Vx8vMyW2MyPLd8/zokMBuR8GytGLeL2+XYKv3yuMqhJCsyzkZV/Xc5tFsuAhfmxhsOO+D4neQ7+JCxSZyRVoW+gv3etFncl2yaaqCJ2KLA7dzcHMFpWIy20fEWzWHe+NKiKMJ1112H173udTjuuOMAANu2bQMALFmyRNl3yZIl6Wfbtm1DNpvFggULjPvsjZtvvhl9fX3p3/Lly9v9dSwsLCwsLGYMS5l1DvPGQ3TVVVfhF7/4BR566KG6z5y9go2jKKrbtjf2tc+HP/xhXHfddem/R0dHsXz58rTaPcvOi8UIe4U8rrpB9FpQo5UVeYOEFAaX9gi6ZYdMnzm9PfLce4bpRPNMvLHVYM4OU2bTxmyKKlrBxoMWrZbomK6nkmF8zlq595gmI++1Px57ecv9si+FhSKvUNch0uszOU4TaTKlbZ2Ucx57iFylOr38Lj7VVHMTrw/TZOwhypG2EO/janKvFE+Qga4TNJ6n/dRif8e8MIiuvvpq/OAHP8B//Md/4NBDD023Dw0NAYi9QEuXLk2379ixI/UaDQ0NoVKpYM+ePYqXaMeOHTj11FO158vlcsjlNMUCvQjwIkRkSIlMTE8Kl4KyMwGKLXINCta1RLxMLX8jA464QKIbkOFQkieNJjiISewwd/FELcc1aMbaqkpvJ6DEHrXhpWSENY6mj07TZDP4rebLfd0IRuPJJYOHVKHFXMYxlGq9R3ncxKicMIcGJT1W8GNa7fAeriEmz5EjWopjepgyE8PmzzluiA0p7k8nrOgZKDM2zETGWydJ/zByZiQE2UkRyf0dczoTR1GEq666Ct/97nfx//7f/8PKlSuVz1euXImhoSHcf//96bZKpYL169enxs6JJ54I3/eVfbZu3YqnnnrKaBBZWFhYWFjsDwiSavcz+bNoDnPqIXrve9+Lu+66C9///vfR09OTxvz09fWhUCjAcRxce+21uOmmm3DkkUfiyCOPxE033YRisYiLL7443ffyyy/H9ddfj4ULF2JgYAA33HADVq1alWadNYvIifWEat1yRZAZFxL1cj+XKDN2nSrZaUogW7zq4WBtbld7pbfKp1WYG9LKtBqvbqIKLcMsZhed8uKI81hPkRlNeIVaCWxvxqup8+40JfjZBg8Wn7sVT2Vb6Gj+XiTGyEHVwlvEXu/S4pD2petLGWc7dkt6LOPHfpZDu6TXKGQvDlNcuiDoJmAq6cEQfTNN1slq9hbzB3NqEH35y18GAJxxxhnK9ttvvx2XXnopAOADH/gApqam8J73vAd79uzBySefjPvuuw89PfLB+vznP49MJoOLLroIU1NTOPPMM3HHHXfA81pjesNCABQCeBPyuKAQPySZCZpoaL4oUyx3ZlK2s1J8FWGiYB0qNdD0k2noS8srSxOQlxhC0W5Z8BCB4YU93+kzufMsjKZ9aCbuI31BGrKCbFHYJjFfssUajKPVWKB2YLrGkQLN/aTcm/y55+q3E6pd8RxZ7pfb3DL1R21/u5xPpw6Vk+CCQ2K9ua6MXGH6BkPEMxhEwmgyfa72wX27ddt9MsYaGVJBBw0mS5l1DnNOmen+hDEExAHV69atw9atW1EqlbB+/fo0C00gn8/j1ltvxa5duzA5OYl77rnHZo5ZWFhYWOz3EEraM/mbLm6++eaUqRFoV/WIPXv2YO3atWm299q1azE8PDztsbYD8yKoet4gKdMR5sh1Wkq8O0SH6bLQ9t7Oyu5u4jkKco52X84+i2jV5lInbl9Xso0CBk0ijrPoym8H0mr3c7DabjfEdzCt3K23aB9ow/3Ybo2eeX9PaujVtmSTKedgBUPKMtPoEGUo2YTfu+ES6fVxu8gDVMnQ7vF5dpW7020ruijAmnSDGr3UXYPGkJJxBvIAUQS4SEtnIci8Q3UnNdXuI2cea8S1CY899hi++tWv4vjjj1e2i+oRd9xxB4466ih86lOfwllnnYVnnnkmZW6uvfZa3HPPPbj77ruxcOFCXH/99TjvvPOwcePGlLm5+OKLsWXLllSg+d3vfjfWrl2Le+65p7NflGANIoKTieBkIkQ0UQsDpdZVn2EBAF6JFVn1Bk81qePqUfhP6FMmGxWFjVwSbyxTAcKuXHI+SakpxtEYCZpN9yXRzASqeYk19VKi4/aXzJtWYPpOHHMShY2F8LRoxTiaa0OqBSOnlSLExn0bnW+a9/R8hc5g46KwzYgtaqHQZ3Tdff0rIkjmL5YjCfLyOmbz0mDoK0qradFCWZZJKFQP5WV8gS6DrBnsrnal7Z0laWAtLchFI9NgC3w5DjaadGBBR5GJVmsiNqldCCJHFaOcxvGtYnx8HG9/+9vxta99DZ/61KfS7e2qHvH000/j3nvvxSOPPIKTTz4ZAPC1r30Nq1evxjPPPIOjjz562t93JjhAl54WFhYWFhb7P0QM0Uz+gFhvj/+4WsPeeO9734s3velNdYlJjapHAGhYPQIAHn74YfT19aXGEACccsop6OvrS/eZC1gPkQZKfHI2WZnm5IogmpIrCrdiCDqU5cmQHY7/y9pELB7qVfTbReAiAGQmY87OLUgazYnkqsipyRVZNEV+bB2V1uqKeB5SG/sLTBQMU2yteEo64s2YRS9TU56e5JxKiZcmxjHv6a5ZgkLLNpNH0uBauj3Sw8I0WZiTE5hXjc9ZWqhPNmGaqTsrX7zdvmwvyMaxBBlX/s4cHN1M7Mt4LZ4PX5zs034+xbEL5BXSIaDM4MlQur5yRK8JL1MnU9mjGVasj5Jj946rvfHGG7Fu3bq6/e+++2787Gc/w2OPPVb32b6qR7zwwgvpPo2qR2zbtg2Dg4N1/Q8ODhorTHQC1iAiuF4ANxMgpGR6tye2VoISTQZMZWXlA1yT9gmyw0SJJc8We2ZZ6JHBcUZMzVV74vO7FSoQWyMRx16ywKpkHDVK02/iRdNKHIzxc5vpoKCVzKG2xCEx2p2R2A4a9SA1ZmYT007BL0haPqKai5HH1H7cZtX+Khe9JlmRqZoMwOQXuzAumskQYyzIEN2V0NDdGbmqrNE5OH3ed1mwsX7eq9KKdZImazaUim4lOcf+t8DbvHkzeuk9oRMn3rx5M973vvfhvvvuQz6fr/tcoB3VI3T7N9PPbMJSZhYWFhYWFvMUAZwZ/wFAb2+v8qcziDZu3IgdO3bgxBNPRCaTQSaTwfr16/F3f/d3yGQyqWdoby+OqXrEvvbZvn173fl37txZ533qJKyHSAMvR7XFktVLwKufHGU/FOUHmT0kL0/3mlh4MDXGuo2cwcZFlJU6aUngdZCX53B6pQXvccmPPvIWUSZaJDxHLdIguuBWpSL2fK5Nth+gFQHAaXuLGK14hVr0IKXjs96fWQV7FZu6D1p55kmHiCmzarece6YGkuxbYqSiLNOe+q7ZeyO8NIHB29KX0ZQrgkph9SZpbtX8mDxHKL07BWXS3Tc4uJpLgbB+kfBqVTvoIQqjmWkJtRKtcOaZZ+LJJ59Utl122WX4vd/7PXzwgx/EK17xirR6xAknnABAVo/49Kc/DUCtHnHRRRcBkNUjbrnlFgDA6tWrMTIygkcffRQnnXQSAOCnP/0pRkZG5rTChDWICF4ugJcLUiMIAMrj8RPveJyKSmn5UzR5+HI7Py9OUvSVn02OJ2JqLOD0fnIdekmsUrVHPrROQCmsSmwRvTTZOBqNJ42ZqF23w/gRk/mBmG3WLrQj9mi6aOY3Vs5tjZ+5xXTjvHhRQ96CqEsutJQFGP3kuZH4H7WC7KMiy02ihzLLIsPLnI0OOSR5L5VoRSioKgCYDOo9G70ZfQwCZ4iZzhMkhpDO8AHMhV4PRPT09NTp/HV1dWHhwoXp9nZUjzjmmGNwzjnn4IorrsBXvvIVAHHa/XnnnTdnGWaANYgsLCwsLCzmLcIZBlXP5Fgd2lU94lvf+hauueaaNBvt/PPPx2233dbWsbYKJ4r2w+iwNmN0dBR9fX149Xeuh1fMYWxSrpBq5fgHDCsUEU1ZZsL7E/+DOqWrKiTt/XH9vh55hlnegj1KoixIdpy0Pkblzg5xevmtUpPImaSox8n4ROEI1RUJDJTILJZSENlD1kPUPuhKiLQlW8zUh/UKzSlM2kPGchw6sAjsgv60HRy6KG3XeqTnmbNeJxfHa+nh36Pneqn00vCpu7vlBLeoSwZEH9Ydx5gUSKCNxRE5+4w9NjrdoFwTZTfYA8S0m6Tu9Ncrr8kyK43X8JGTHsTIyIgSqNxOiPfS2gf/AtnubOMDDKiMV/DNN/zvWR3rgQLrISIEoQuELkIqRhjWkoevyjmlshkW6IXBoorjTG0l4o5FuStnZyiFY8kIovkgjUkKqUZQuV+eg42nIC9v+q7fyRgiJzF+3C45kHCCCrCZjKM2QE0dtzFH7UYrRokSnzTNPiwOMPRyqj1lWPlysguysl1JnAFKSa9ttJDslZNXOSuNlWpB9l1JKDM2iBgcN1OO5KuqkZBiSKEGnP6vo+gAPSXGdc1sodeDB9YgsrCwsLCwmKeYC6XqgxXWICJEUfzHMgiOF68OIvZYMt2V4fIZcie+B4OuuA9vSm6skVcoQ9t5EcOaYmIRUy2yThGXCiHvlCtXcuWlktfNbUkyxIjucFmmf1K6tiPSMtqfShtYNIb1BB0AaIdgJk90FDnBekOmbFixPTOhf9kqdc96KVMtkN6drsStrQQwk0eH9YmqVPamQpNkIaGzxmrSO5Ul707R4H0KFK2i+PzsFfIMgdQihT0wpdHNAuZbDNGBDGsQETJeCM8L4fskbCiyiMngKBYl3zU2wnwXqawWyeiYjCeBWpfclpkgV3SeJgEyjjiZQswZVaLdXLZTlCqzhs2FeEZzaoY6PKR2DVYJDg1xKTq0W/TPwsKiHm2JD6OJguhyNoi8Esl5UDq7CKvxORyRdPycKs1jVT3FNZWk1HL8D8BxPnJ7xqN4Ipr4hKHUQ1lmzQg9shEmDCE2gtjgCTQUXdXObQckrEFkYWFhYWExTxHCmZkOUQe9Wfs7rEFEyHk1ZDIeKlV5WXw/Xkn0FGTw8Z4x6aZhzSK3R7pna+MkV1+M+3Co5EdQ0HuFaiz0qGxPzkcLEy7/4VMWV6ZE7m8Kioz8eKUT5cn3TQGUymPD5T8UzxHqMc0VKmvq2IwzC4vmcV/17rStZJyhmWJmGlTl3MUZq2Fe/2ynTBSHBjDTxokpJcpOq8i5Z9tUTOdzUDUHMPN2zvQKItYIiudqU6C1Sx4n9gqZNIdSEM3EfYvstKCDgdYRnBkZNZE1iJqGNYgI+UwVmYyLICcfhp5cbHVsH5OxOGwEZYvyQa1Myofdo+0iZT+iumegbDGm0rhYbI2NplK8P2ee8TMZZmV/Cq1GFHpQiH/ukIykzCilu/ly/M4CKpa4h9SuWxEDNBlKjlC7tm5nC4s5A8cQ5SU/zwaRsjvbDbpdqDsWmQ5HKUNsoTQuRkpxuMFOX2a45ckI4vpkLqhNAyknrzBWpw6V+mWg45iaq4cSN8R90D7COOokZcYV66d7vEVzsNFWFhYWFhYWFgc9rIeIUMjU4GdcxaIer8QrJ5afLxZIRn5KpoL5BbkCUQIJk2Brx6fARTqv4umhf7hc9yeX9FHSZ6Rx1hqLRdYKRJm58VonO0Lj7JLj54wz10SlJd4iptGcDFXErhlWYRrPEnubLH1mYdFhcFC1UoqF27LpUTl7txa3I9IXy5CkGSc2VaVzHTXKMpsox3PPlkh6o/sLJOKYlSKOocdBzrLzqSQVlzWGmHZzncZlitIsLAMNppbxSLLMOkiZ2SyzzsEaRISsF8D3AoCeIZEG2p2X1NJ4SbqXRYwRsNc8QinxTj5+eGolKhjIlBobT5Pk+qUisk5yU3Pqa016mgEpTg2XstOmiP4r7ErGQYqzSkYJp9tS2+XaaInR5HCM0agsrNgMUpFGMjJnqy6XhcWBCKW4qzfNuCECizEymD5zy5QlW4rnFX7XRiQOSzqKCKnGI2pcqDgJA6AQhCnK8B2uylVeV4aofYIwhNgg8jmuAI0NIpFRxmYDxw15Tn06viktfzZgKbPOwZqOFhYWFhYWFgc9rIeIUKplENQyKGY46yFeCYyWSPiLVjGsiTE6JV0zWZKrr1Tiy5zvlkuoGq2U0vIgANBFq5sSraaSXRTNIgrMZtOWS4RwcGNamdphGk1+Hnk+tSnwmjxErvDksHCjY1iBGCqiW2+QhcU8gKOfP9TY4kjbFjHMyvzBcxB5qSPydIdVntPi/qrk4QpI82y0KufcRTn5qso1KKvBpThMmkS6umXsSzLVQxPn62Q5j3CGWWY27b55WIOIkHFDZPbKfComHHQ1S6mXnnwgd012pe3uvDR4pii9NJ+L+3Cp74BUF/0CpeuXic7yuaZafGxmjCYPmnQYSmYZZ6UlqbD8LDtB/QQFAFGGzp2VFlauEn93Z5LpNTLoai0oXCtFKW3GmYXFtKA8Z9OkzwyLGo4RYqo9SLJaFQpfToVK3BBy+mfb9eq31wI9acFZZAyRms9xMhlXb8wwdVSl6yQMBo7ZVAxEFnFM0vg5nX+2YSmzzsFSZhYWFhYWFhYHPayHiNDnTyGbDTBckcF8lWRl0uPLoL6RinTlFrNEg1EGRd6XbppcQrGNTMp+mVLjVVGWSn6UR8mDknh3aj1ytZIZl+dTaqPx4kXnRWpiNeiPS29RvkSB47mk/AfrlpTktWmGDnPc+vOT1prNOLOw6AAcnylyzoo1eBQ0jzZnulZ6ZbvaTyKIOWpT7cdM0s7TXDhQlKlqAzmZZcZeHx0N1utLldpyoH+tBbz+J6+ayB9haqnKQdqe3uPUKVgPUedgDSKCkEjP0sMnKLQacdsFijHi7YwueshLtXjiYSNJ5bDlzzA1yRVdJaLepL8JzkLjDBCiuFhJjE4jPL9UBxGcVK8cx6MjpVm3HO/k0jiMqfYNoBhPlj6zsOgMEoPH6ZO8llLQNdIvalyNYCO/a33KdFWKuxbI2KK5x0sos4JfH7MJqDQYv9R1BhFXdDel4Oc8/XkagccRJPNU2EFyxRpEnYOlzCwsLCwsLCwOelgPESHjBMi4AS9iUlft7jIFT/skzFiTbhXOTqvRqsJLPB5dWel5mqhIT1BImkUcaOhQ6Y4g0TDijI2I6wVxVgf9qs4EB0eLk8jPSxQImd8l216ZAqxp/1DUQ6MVoJMl1zvRZ0rpDk11bvYEmag2rtPE9ZssLCxmCBN1Ts82J1cEfv3+XKg+Yv22CnucaA6iOUuUQJqqUskjmhN2OzKZo0JB1X2+TJ3lemdym5yfWU9oMpRz7iJyZ5nqoAkETKWlpTusDtGBCGsQEXwnhO+E6M1KPno4KQzGHPVkIB+sXootYg6aDaWuxIDiB58pM9elNNEMGwk0kSSGUkRxSqJoLKAWjvUotZU5fnFKZsQzkqYHJ3KkKfoAMqSOLSbIKCs7drJE83lsBLESrsYZaaDJorml7C0s5j8MmWW8sFCoZ11dQYobYiMopDbXdawVac5K6DOW/uCFGPSKGwDFS5YT+p3tMkehzPTzKWecLc7HorCcJs8Ulyl9Xpd2r6brzx/aPsLMUuetyEnzsAYRoccvI+eHmAzkwydWG/yQMf/MHPU46WZwYULxMFdDVj8lbpt0jXIUxzNRkoaGk6TEe3m5rygaGw9ENkPSKuI4IycxsDLj+rghXihxgHWVJ8JEvj+kgSplPjxDbBEHajYKvDYUhbXB1hYWbURWrzumxBNxk2wEIe0R0VzIFe45RMehhV1EU0KYnFPotAGqt5w1iQKq0sqeeGE08aIShpR4jj0aZ9mTxGgqkmcpR9olOlVqq1R9YMLGEFlYWFhYWFgc9LAeIoKLEC5CFDkbIVltMM/cBUmTjVHKVlHxCknvjuC/syTo6BkyqUamZH9s1+fy8ZhqpGodkto1iD4D00/j5AJKv5beza3GCtHJJVuYrvwiWrGBKDOmzyJWhWT6TJfW2wRNpkvXt7A4KGHwojZ1aOLFjXw9ZcYeopBiiLiumVhKZ4gyY+kPRe2aFfdpnhIxkCHRaAF5ethbVKS4zSylwQvVapMitQns5Rd9MI3W78n0f6bSRBxSzZleZu10YD1EnYM1iAiuE8V/9Hb2EoOI5eLZ3VpwOZWeJhIyOoSLl2/MEmllTFalEZEjnQ5+8AXdFlEfLpUC4UmlWuKoatnUFT1mip3jjUztSk/cSYaDtYvyeriTpE9UZn0iMgCFcdRMCY9GatcWFhaNoSQ1JHGAbATpY6CVtjYchwyLjLJw0r+EmT5D0ua1EscQ+Ya5MNMgvsdkHGUM8URiruZ4o91UObuPjaOk71bS9mcKaxB1DpYys7CwsLCwsDjoYT1EhG6vhLwXaDMQFI+PKz0zZUdyS+OUfZYn2i1MqB6m0XiFwVSaT6KQnLov6C6vIFdHJaqXVmXPEWWqsWMmpbs4eJpZLfYK0T7VIilYT8SdBDkKEKc2fL26o+PSajTYNz/G1FjE2Wm0yj3LfRsA4P7w2/vsy8LigESr9csczfNH6V0KBe7pPQpKdnqyCydfRJwuxg5hQy2z9HPyGvGZmaridpa89SLZJSA3k8lDxJ4Snn+F950VqTlZZpI0TcT2mk27PyBhDSJCnHYf7LUt/reiVUFzBxs5Pj1EPmUsTCVZa6yAzQ+kyQXMtJrYv0pp9wG5vKscW0Rp98jQg1uLH4yAFa6rGp0iQIkB4HCnSnfiXqbirkFejtPLGQyiHumCjoZHko55AjVoFimdUJp+8t1t5pmFhR5KCr7GZopcDhpsokN+XBOjSVk70ufZMdkuGeYjYQjx65rNjImynJDGstIoWZSXWiGpRhBn8NICM1CMIDQNzirm9Lq5KO4aRY4SKjGd4y2ag6XMLCwsLCwsLA56WA8RYWFmDIVMBmNhvu6zQNHHIGVV8vR0ZWQQ8RRpGQm16yLty8qr7Dni7TqY3J+O4iZmN7bcKjI8vFH5s9dIDZt1RPjGCKWzK3WR13K0rxJgTbRgf588bpwUIIVrvUW3s0qlRXXbLCwOGswgy8ztisVmA+6CHbT8SBnUrFPKTNEuo48pCYsd4I2eeE4OYX02BhffFvMhK1bnOATB0XvldWAWgCmzufYahHBmJMw4k2MPNliDiJBzasi7kfJgNJJ1L3A8EaVjhS67ahMxQ5ppfJfOYTCCuHCs6IPFyjgtlScS1yfVVvbsVpLChBSHxJ5fb4rVag3ijRmxjQzELKlkk4J1tEAWj8TIKOrAky3POsRa6owgtQ95oC3zYWFhANHQ4WhctsKpkTyHyfCJ9r3Q4nmCQihRpUdfQQOmiUsXMdWzdbdcXFX7aDHZHSTd0gKNFpgLMjJDLDCYNmK7S99VpcyCun1tcdcDE3Nt/FpYWFhYWFhYzDmsh4jQ5ZZRdD0lEG8sjN2z7Hrt8aTgBnuQlCwGj4S/Er163rcW6pdKHKTNEN4iRYeIRMx8ci8HpGsElrTPx99ByUIbpX0N0Y3sIRKrQPYQhVTvKChQjbOSHJPihU+COSPDNTAVhdXRY6aisDbY2sKCoKHYnDIXRiVVRQNl1sjRwIwUa5dxodcgSxS9oN0Mnm5i6hVH1Y7dvWlbZIYtKchirYrXyrDm12Wczaf6ZQwbVN05WIOIUHDKKDoeSpRKn03I8JAmhhLk55xTxbVwdKn7XG25VTemeGgzlBqapT7KVA8ok6Wir1T7TDwY1Sn62clwU+KNOAVfYxxVqfiry1kkdEu5JYqj6pOTmMgyM6biK4YP0Yk8EF0mmqFYrDWOLA44KEKLJqkLfqDrC706Y5JOwjJ6Ppmm5rWJYbvcKJukVwtvigwUsruEUjWPM6jpDRhe/FVI+XrLjgUAgL5D5SK1ZlikMs3FWWJiscuLXm53sm6ZDpYy6xysQWRhYWFhYTFPYT1EnYM1iAg1eKjCQ57LcehcrrTYqtIl5FUF02OlsH4FF2qXWKpIIwcKCiufrf0yuXGyRJnlCnIcrOVRE+5oXjiyh8iX7UB5huQ/ql3JvvS5Ry7xTIl1jcgD1NMle0uosmhMurmN2SymTDSxyuW6bexBMnmLEkFHwIo6WuzHaCLLTNEh0tHNlPmpeIfZK8QOWprGdDpESi1EYuKDPHt2SYRRjE9x/O47qw0AHJ6zkonqxTEZdL20IBM4VF25+uBohpJZZqDPxLxtmr8t9m9Yg4gQRC6CyN3LnRobGjl6YbP7tqRkJpDhwG5b1BsznAmRoYcr43A6PqWdJr+UKXWUVwETFTkbcRFZId7IlFpA/XHtRqdMBgW5sV2Nim2Qpe9NqtYe1VTzeqWUgVeJDU6nSn71KenyVmKLjJloTVSD1WEG6coWFvsTGkpSsMHERgkdx/E4JqMp7YNtCGXRxds185fhkVTrQct/9PROpe2BYkz7Le2SRtCKwq60zfMwhzEEmmGYMsvmGtEMKTPrIWoe1iCysLCwsLCYp4jQsmRb3fEWzcEaRATfqSHrRErdHBGIF5JnIcsBdxSsOBbUCzrG/SbCjBR0PUmiHaFhJec6RIklHqWQPDQs4liuUXYXu5dpZZXPxh4ZxZtUper0XOaDqC9dDSPFJU6BkrUaeYu6SeisJv3t7kR8sDNGA83QrVjh/BIDxO9hyEIzZZ9ZIUeLgxLsGRXPgBJ0TU2mvlh40TN4axMEcipR6DVO3FCOE90ZyrLxPMXtDGkV9WRjMdxFWUn/sVdIEWaE3psv2uxBUvTnNMHWJkrNYv+GNYgIvhPAd9QHQ1BmAVkZVYrdYXqNY4/YxVtOZodS1Phy+0RxcU2ycjImxZBSMihkO+/LcXDBwqlqPI7JEqlJcwp+VU4C/Lyzl7tWTBSiWbmbs3e7aeKSwt2KeKNQs/aKRepYI9y4N3T0WTM10AywBWItDghoMsiagUPPnykWiNssvCgWRLzsKC+kzw2FopWir0nMorJEYdpe4fH2Hn3SncicNcT0lJSqAhQKQSELQhhXCXOg+c1j6ZI5oNJCOHCsUnVHYA0iCwsLCwuLeQqbZdY5WIOI4CGK/3gVIBYHvFJSvBJEC9EyxtMEZpsC/Hg710BjiJVQnmr21DL6VdEkCTMKrxAAlBKtohoFSdfKVGqD6C7k5fg5aNpNNEDYPc6Xi1hBdUWpCDnG53QL1Mkufd2i6UKlzwxeJBtgbbGfgvW0uGRNUxB0clbODUbtIaLJ2MEt9qkRXU5VMtJsVAAgZwzCAntb9vovAI8SPvi5dTNyfsiQF12EDbSa9ZVjoaQEypxMbi1Fdy6Z7GyW2YEJaxARYsos2ktU0Uv+vzEdY1I61aV4Mt3FBWJ96qNM4xAUXIlicZQYokD+lJUaGV5hPQ/vGCYgryAnicoUTZZl6q87mZhodsxMclaK7DtgI8inFHwxyZJB55BwIxLhRmAfatYWFhYA1Hg512/eGxB1N6FObUi8EpszVLM5pPUNJ8gatBblYtNUdJW257L6MAAxL+bohKbakBwCxWKLOmFGptqYcgqSdtBBGiqMHDhWmLEjsAaRhYWFhYXFPEUUzTDLzKaZNQ1rEBEEZcYRxcIzVI24nIdmqQR1VaHzCvEKpKhwS7JZNdA4qTCjRqyx7ntQEGBG8WzFqygWcaxU5S1QI8+STyU/arRSi5LA6zDLlBrRhvS1lPIfSjvJ3MtRwGNGfysq5T103iLOlGkiwDpqVP7DwmI/Q8uZk8n+1QXSQ8QiqgbWXh/YbNAmonKPcIiKj7h0YuK9dn19hXvWe6sFeq9PfzY+kSnri+dhrmZvCrYW4AQZtV6lFWY8kGENIg10dciaAVNfIRkiIjW/mYeWHzQ2ftJaZtRHnlWtFQpO7pNlMbLEYOAYKDaeSjT+KhlKinpsNZnEON5Il0oLqBOoItSWqNwSjYa8nCmdfqk6GxF9piCtDNna8sfWMrM40KAoUuvtBi0cOk5ZWzXTTg+UTU/JKpVtLu4aUmyROCdnt/pE23uUXu9naDHpy1WXmPc4O1edTyk7GJ52u8g408UVAWq9yrmADaruHKxBZGFhYWFhMU9hDaLOwRpEBMeJ4DqREkAtPDa8jdcRpu0MsWIJDZllJuor43CJjfosM/Y4ceZFjTxA3BZB2FMUmD1FnqCQ9g0Dg5dMDJWKnSlJeaaSZOwhSsoBRBRUXeuXmigZKuOhnLoRfabuTP+QA7SV7y0ONBgpMwP97iYe2Bofx89nE23hGeJ4aIcCqZkiZ89RrUKJFIJ2VxI/KUCc5jSlBBHRZ8KLznNlM0HEivCiZipRBB3nWITRBlV3DtYgImQRIItoL9dw/JRXFPVTisGJZGoFP2QTlHIxkkg5j9fy2n3LNHuwwFioCEQmtBtlU+RcNrCkoTRalbEBJco+E5lok1TrrFyRxhGn4zMTFdF2J6HMTHMET5Bq3BC5zT2xjWq4lWk29Vgllmfk6UUHKin486dEkYWFUmy4GQgRUT7OybRG6kTl2ELhzE+lZpkxBb++LzZ2FHVqfT1XeFOUsZXsr1DyfJzhRV6L6imxmiJ/0tiACYlWE9m8ipwKNXNWlfqggTWILCwsLCws5ilsllnnYA0igisoM8o+Ei7ZrEGjQjmeViZZ8iIVk9Qrj2qFTVIxMHbPsp4Gr2J0q55R8jiVatIjxTQZu0uVFVACDlxUSoGwTiI/UJpVm7KK5I8NwdZiNaqIvnnkncpRRCbDacH1azPILPYHNCMOqruXZyAq6gwuAqB6hZTTNVHGQzzP7DVS2oY3S5StF2Z0iH7necIx6RMRxJzFOmwFyuANlQBreVzOqS+zxMkoPMfz/Cxc4510NMcG0UxiiNo4mAMc1iAihJGDMHKULAWdAJeSxUWPRmji7BNeXDV85APJxpEJI7U4xkZxDdOEkSU52JCyz5R4omQ7CzcyN1+j8fNXcbg4Y9JWCj0qGWQ0aIPbPN2mTLC0Aws25qWhFxlii1qBLe5qMZ/Q3P0oHyqdKrXSh8lQon2E3EVEIo7VLhZRlYcpoTb0thDTjRJjZKDXlLYmJsnr0kdfshFQpTmrKysNnjQukgbdxUUUyZjk+VKRRUn3kdt6SDdAl3Vs0+4PTFiDyMLCwsLCYp7CZpl1DtYgagARzBzQSsNnh6mJImrA2DClpmSqka+5RG1Bu7E3yTP8fEx9cQBiJXErs7Q9r7xqpAcSspgaZ5SJoSo0mnYYynYlaFPoELn12+Lt5CHyqYTIBBVLmi5s/TKLOQZnOk7XY+l4LQgOAWo5jlx8LJfWUcvsQNtmT09mPDmOynVwW/EWUaiAqHAPyCwzdg6HPNcYKPKpSr2oIlNmDNdAuylzZKI01O1Kr1BVSaKhbF8RgN1BD1EE8xTb7PEWzcEaRIQADgI4ioEiat6E9HCGiruVOqDnN2gQ78KGDz+0HCuUBwXyJKf06UFl1zCnhrIR5Nb2TcdFhrxaLqzohE5dm2l1vgY8/yhxBEoMkfhcn9nClBmIMms3RKaOyNyxsJiX0BjxrRpS7qKBtF1NiivXihRfYzB8FAqchiGKuvL0USPRxZAMH6UPr36yUEKkaN7kb1gjGRCf5g2xyJsMeKGoX40qUiccFpF8CY4bKpLkftVQwNviwMOcLpf/4z/+A29+85uxbNkyOI6Df/3Xf1U+v/TSS+E4jvJ3yimnKPuUy2VcffXVWLRoEbq6unD++edjy5YtHfwWFhYWFhYWswNBmc3kz6I5zKmHaGJiAq9+9atx2WWX4cILL9Tuc8455+D2229P/53Nqh6Pa6+9Fvfccw/uvvtuLFy4ENdffz3OO+88bNy4EV6LbuW0lhlBeG+YJgs01Y8BKJ6SqsPaQvs+L9NnDEUAMqrPhFD1i/RCjxxULbLMQvL4mIfWQNbfIOlvFHVTslXqs8wUTRSfVmT0Gyr0WYWKpllYHGgwULsteYZ4X5do8u543qj00DxGjlguFm/yHHkJe13tp89pyEGe5o8se4uIMksmCH5hKzpmrE9Ea3euv5jPxHPnJInNjtOXKXj6gO2AzplmqtF8mjeU8ZgTWM6sY5hTg+jcc8/Fueeeu899crkchoaGtJ+NjIzg61//Or75zW/ijW98IwDgzjvvxPLly/HAAw9gzZo1LY2n6AYoupGSnlmBUKqWG03tqrbYj3y4XPINe5QLycZMYKhlJqAqqDa+01nBWqSxctFERXzWkF7PumSizdsapebuDbGPLq4IgFLjLCqQAUyp+dOtZabAxhNZHMigiSxc2JO2q13xfMPPqiKimtVv5+c5pceaWADBZR4d+nYCz5fzG6fdu5p5jMGLwIkmDCKeR0V2MMchjdSkuC3TZwKVsINWxky9PNZD1DTm/Rvhxz/+MQYHB3HUUUfhiiuuwI4dO9LPNm7ciGq1irPPPjvdtmzZMhx33HHYsGGDsc9yuYzR0VHlz8LCwsLCwuLgxbwOqj733HPxtre9DStWrMCmTZvw8Y9/HH/0R3+EjRs3IpfLYdu2bchms1iwYIFy3JIlS7Bt2zZjvzfffDM+8YlPGD9nGkysPHibEgTNOhe05OHyHiKAWgn2o8/ZfcuUmC7TQTe2vdu1UE+fCc2hZjxLCA2rCo0gm1LLjFea5G5nl7zQnlQqYudonGW958hlyqxEWiMtQKEc7MrJokPgzDKGUql+uhpZJnrNlw9jpV8+gJXepNyF1HVFQG1eJhs0aBVKTLvN0XuFHI0H2THsy7UVlTnXrT83hwZUDfMf96Fsh5gXyYNv0izax7bZglWq7hzmtUH0Z38mJ5HjjjsOr3nNa7BixQr827/9G9761rcaj4uiyJiyCQAf/vCHcd1116X/Hh0dxfLly+EmMUTDkXxT5xPDJTC8PE0ijbrsM1fJbJBtzzAhMIQhFCqUmr7uGT/4GUcvTNbgdEo2iJIFkkxGSsq84VIrkyxrO1aS70LebDZ8gixdmyzdopxxNjZuGnnzsJSZxRyDCwyr6fhKxdP6A5sQYMQrlqdNfqbCJMW+URYoAIQ5/dwkjo3IOFFoMs5UM4i8OolKPm9T4olcvRHEYrL5TDyJdPuS1urN6NPnc7QI5blQiN36rj47raYp4lbroBK+1SHqHParN8LSpUuxYsUK/Pa3vwUADA0NoVKpYM+ePcp+O3bswJIlS4z95HI59Pb2Kn8WFhYWFhYWBy/mtYdob+zatQubN2/G0qVLAQAnnngifN/H/fffj4suuggAsHXrVjz11FO45ZZbpn2efkWDIrauOTQvNFjcai0z+kAsRmgb10vjvpl241WMCMLmFU+Va5ZR5xVyGXO7Gnh14+dzOIormv3cnK1S/zEHTYYk8MaJGhyoKagy/jzI8XHkSctRxllft2wH8fULd+2GhcW8RxMeBfYWnZ29OG1PW7xxUtLKtWJf2hbPn6nUBnuIFE0inh8Edc5DIwFGZCkImpM4yAvjZuI211NksCco55OQrYb6Usty0FyiiNTq506d59xrJqygU4icmdH71kPUNObUIBofH8ezzz6b/nvTpk144oknMDAwgIGBAaxbtw4XXnghli5diueffx4f+chHsGjRIvzJn/wJAKCvrw+XX345rr/+eixcuBADAwO44YYbsGrVqjTrrBXUIic1gATEw8WcMWcoKBQ7Hcoq0xWNy7UZmozT8YUwJGc8jDgyE2IqkCMxxRYJmPh4pdCry35u1LVZfZaNMZ78IhZZIzZRxCWw8aTGE5EoZI/8Xm5Fji+zM+nQ0VmezUG8aIRA496wgo0W7UKn7iW3W6ojllZKMcZKN80JyXRkFGDkR0qhy2l/8Zwrwo1MfVF3Tr0hBci5JyDRRZNxVKZUeycrV1KlJN1+0pMTTIUsOhbU9TXZYoCMucxQPUhe3OqKbOuKbc8WOh1D9OUvfxlf/vKX8fzzzwMAjj32WPzlX/5lmhEeRRE+8YlP4Ktf/Sr27NmDk08+GV/60pdw7LHHpn2Uy2XccMMN+N//+39jamoKZ555Jv7+7/8ehx56aLrPnj17cM011+AHP/gBAOD888/Hrbfeiv7+/ul/2RliTimzxx9/HCeccAJOOOEEAMB1112HE044AX/5l38Jz/Pw5JNP4i1veQuOOuooXHLJJTjqqKPw8MMPo6dHppB+/vOfxwUXXICLLroIp512GorFIu65556WNYgsLCwsLCwOdhx66KH4m7/5Gzz++ON4/PHH8Ud/9Ed4y1vegl/+8pcAgFtuuQWf+9zncNttt+Gxxx7D0NAQzjrrLIyNjaV9XHvttfje976Hu+++Gw899BDGx8dx3nnnIQik0XnxxRfjiSeewL333ot7770XTzzxBNauXdvx78twosjGoI+OjqKvrw+P/3IJuntcrfAie1oCg8BOoAQ5y31KUbyKmaBgbS7dMRHmaLs05FhKfncQr/x2VaUxOFqVUct7KsW0PVyR2wVNBkidjQpt41pmLHjGq7ZaRe4TiXZJX77ErdBqirLFKM4RopA0e42yY9yWHeb2SC9ZdkSuDDPPvQQACEfpQNYGaSHoMaKHlLN+mMKwsOgk1uTfvu8dOKiaKDV38cK0PXns0rQ9sVQ+21OLkjAAyUCrAoxce8zkAUpOHyklOogay9Dzx0PNkM6Q2J8pfPIQeYY2e7j7ilMA1OSRFT1qTKlAvy9rIfI8K7Tk2ENk0ntLRRzHq/i7130fIyMjsxaDKt5LK772cbjFfOMDDAgnS3jhir+a0VgHBgbwmc98Bu985zuxbNkyXHvttfjgBz8IIPYGLVmyBJ/+9Kdx5ZVXYmRkBIsXL8Y3v/nNNDHqpZdewvLly/F//s//wZo1a/D000/jVa96FR555BGcfPLJAIBHHnkEq1evxq9//WscffTR0/6+M8F+FUPUKeytVg1gLwVD2TQbR/XblSKuhu18XNGVMQBPTcSuxh1laRBxfBArtXIKaq1BEUJ2Z/Okw9vZZK6JWmY9ZESM8mxKfXMKLU+sybPtTRk+Z7CxNUUu71pQvy+DXxgNjCO1UGaDfi0sZglNxQ1pssvcBf3yHxmilui2D1n4NLndXaaxc/XGTrwvbc9oqC/exEYQU2MZfTHsSMwlHGNkEGNUMssonqgmFnccA2Uobr27IulEFmwMxYUy0IP+HM8J7coy21tvL5fLIZfbd63IIAjw7W9/GxMTE1i9ejU2bdqEbdu2Kdp/uVwOp59+OjZs2IArr7yyoT7gmjVr8PDDD6Ovry81hgDglFNOQV9fHzZs2GANovkKYRyZdIhM6fgMcaypMKCif0FPIq9ijuuK67M9Fq5Mt704KQMl2Qhi8MpJxPRweqkpeJB5eI4zyuTiyahWIiPIUACSCzw6rFtUStJ+myBsleFxxW6dkcMvEfYWtWAc2VR8i9mASYeo5ar1OpTlQiE4dFHarvTIvmtF2r/RlNWM2rwwjpSAaT5Ov52r2YugalcTrL03MrRYU+KTRBwSzX/DFRlbmffIeKKJig0lMUcqHqJQnq/gyesr5E0qwfQNlLnC8uXLlX/feOONWLdunXbfJ598EqtXr0apVEJ3dze+973v4VWvelUqeLx3FveSJUvwwgsvAEBT+oDbtm3D4OBg3XkHBwf3qSE427AGkYWFhYWFxXxGGwJbNm/erFBm+/IOHX300XjiiScwPDyMf/mXf8Ell1yC9evXp5/vrfPXSPtPt49u/2b6mU1Yg6hJKDXLDK4NJc6IhRdTL5OEksUQSW9LYOojWcX8XtfWdNvOkgwCKNUa/5R+sgLyaSVUIqqNV2FhqKfPyiWRs0sdM8fukweGapV5U+TdEbXMKLNMUbg2iLpFGYpPSh5mRbGal47T9BZNWy3YwkIDkcHYjCdo2vdel/SIVHvlS46lLNiRLTI6WT1erUcYadu6FBxFaNHVU2ZhzdFuF4PiMNaIPC+BUz//AWpWazmZ93iO2l2S7rChLhljyHNk1tN4iOgi1JSKAZxhHG+vhA08zW1EuyizVjT3stksjjjiCADAa17zGjz22GP44he/mMYNbdu2LZW/AVTtP9YHZC/Rjh07cOqpp6b7bN++ve68O3fu3KeG4GzDGkQE14n/9k69B1TKrEKu1+aCrZu/mTnYmh98YRwtzozVHQMAIyU5KRZ8yY9nyWWcTVJTmV4TSq8A4AT622F8Ss6c6dzFXFaO3NkUq+CUqUgrGUdiLlFS8Q0FYjk1P8xSIKRILx5psQ6dYiiJyFD95Ha2/+dp+77q3a2dx8KCoJToaAdNxkrx/TKukJ+dWp7mD4rJFe96YoLUeazIixq9cZTaKqapjfMbOGja1VBf/PBzDBEvtOhENUr4EEkhvJjjMIBdU9I46svJzI4SzXXCIHJpJZalRSMbSpWk72rn7CHMh2r3URShXC5j5cqVGBoawv33359mh1cqFaxfvx6f/vSnATSnD7h69WqMjIzg0UcfxUknnQQA+OlPf4qRkZHUaJoLWIPIwsLCwsLCAgDwkY98BOeeey6WL1+OsbEx3H333fjxj3+Me++9F47j4Nprr8VNN92EI488EkceeSRuuukmFItFXHxxnBTQjD7gMcccg3POOQdXXHEFvvKVrwAA3v3ud+O8886bs4BqwBpEDaGjx0xK1co+qKfMqi14ivaGSOnnQOvj+15M2yNluQQcpTZ7gMSKiwMNOfvEtArjDI8omxSZZRd8ha8Ry3HLppKtIhwzLnt/eF/ZDtmz5JNnrjv2WrldcgUYTsi0WiN9ZmHRQQhBRlNQdTsQFohyz5P0Bz1TSnJC0s5MyE0cdM3SGSF7T7mumfAWGUQXI0NxaKVWmRiIhkYD1EBpPo6lQkQBWPbqR0rYgX5+yynB1nEf7BVisJddJMY47XC7NA0HjSPhGx3fPLZv3461a9di69at6Ovrw/HHH497770XZ511FgDgAx/4AKampvCe97wnFWa877776vQBM5kMLrroolSY8Y477lD0Ab/1rW/hmmuuSbPRzj//fNx2220z+J4zh9UhQr0OUYneyI3orqphX6a+xHbet0KfT5IOUYniiXT7K6n79Pl/l6X+yAMvSgu7Ly9z23uzcbwNu6JZk4hT9ycqOe0+U+V4n1qFvh/rFFX1lJnD2SXJPt4kqcgSE5gjFiw7Sum2uykLZCT293sj8vs5L8syHkbjSIdQ/7miT1SThqVVsLaYCVouy6HJfHQKctETHn1Y2p44VFo2UwvlcZND8thqd6K7Q3F9tQLRU1S1XtEZorT6dEgs1eExT6b9Jtp3s2uIQwppUdbfJ5/niZK09HSGF6fxF3LyueXYSS4FIsAZuT1ZGZvY7cu2yDKrTlTwvbNu74gO0fIvr4NbmIEO0VQJm//Hulkd64ECm2NsYWFhYWFhcdDDUmaEAE5TKtTG45sR1kkQGvrj7DNfMxQ+B3t6uj25illQmNTuU8zEXhVFY4g+z1I9oGpGrqDY7Szos8Dl1SLTZOTmztIykVSrRXdKwVdaAIXk3AmyvIplj1PsqXJqFEy5myOzDcVpdd4iQ0ZaW4JfLSxmAc7Q4rRd6SOPiSE5QaGzkse/vNAgOKgoVbP6tMYDxAlknJ1Gnhu1aPS+4ZEXKqiS95q9QkyDhU7dNs5Iq1AfVRJDK1PG2UAxnnCqBqFbXYhEtVq3afYwD4KqDxZYg4jgIYKHSFGR1hlCv63ItMAxepP/Xm5r3b6A3lBS0us53kgp+kpy9ck+Js3UHk9mULyyZ1faLpPxI1zGIVWTr5E7nl3G7F6uOJSRkbjIwwxnizBPz8OniYTS8aOE94/oy3B2GtWphUupw1MLaXLrjvtQ9OYCKUrnkmJvSFRaw3gik3FE2232mcWcIVlw1BbIO1+JxaNVVGSQr0gLNOdpUZPRvzUdg3CrEFXkl23Glw90rapfTDiKARXWbeO5JF/UF2NlQymsiYBE2sEQ45mhBR9/r4lKNvlcXo/JqjTAypqMtFq1g1aGrXbfMVjKzMLCwsLCwuKgh/UQEUajLMLI1QpxMQ73d6btKnkiXKVWWf0KiQOpGWotM4PoY7KsMxWQZapvWX5YjoPcwLuqsXZP3tP7e0t0O+QVysyldqMgc315jYjVFhMqLarpV7OVftmuUQFKpfbZRBKYvUCO2SvLQHCnIg90SKsoqtCqsxElptMsApTMGpE9ZAvBWuwL7FVsioo1FW/ti4NiAxIpjXy9d7VGNLTiIRLJXfT8OTnpPfF8vR9aoaUSb4oiGGigz1oBe24UoVhFy4iLrSZjo+czDFggUh9i4Lk1asfb+ykBZceEnD9cCu4OkjHVgs7VN4uixnkhjY63aA7WICJkESCLSEnP1PHHgWIw6Q0HRdl6mimTTJ+JAoN8jpCMLj5f0aXaRjyZJv0Jw2hvcE21PMcqgScgp25snB4b0mTKGbshxQJFSVovZ7BU+/QZKt4UTfw84SanKfcS5Uf11ZyaFKrM9Mp0UHD2WTKpRSbVWcNMorzQki/JadXWOLKYNfTF93KtQPRxkV7YRDErMXqUMh8KqizLCxZ92rpvMo6S/3L6uadkiFF/ND9wFpmrMZp4plSKu/LahMYqMtFCiiVURCFZ+dqtF3QEZOzkMInbMnhRmS5MjdWoZwE2hqhjsAaRhYWFhYWFxX6J4eFhPProo9ixY4dScgoA3vGOd7TUlzWINPCppoSOwspSaHMl4tUDrdS47IamD/awcHwe02fct25sVc3ndeMnmk5sLxJlxp4lDsCeCOTyMkMrtUKmnm5jR8oksnWfAwCXMxK9hVwKgAK9HdIyChUdFC4vEP+Xr90krdqcmhyHN94nt1Nl8CgJUHWq0svH2kNKtCf/hJraaLzytd6i+QlRVwyAVttnb7Tzt1NLdxh2Mo2J7kMhwhhm5b7sJa1SlgFnbqrih+K/RIFliULK6D2mHlFYwtscGAQYleBp1iqiZ97VBGwzZVYj/TPel/cR9B4nPaSB1lA9X9USJVpwFpwQrPXryxwBwCRTZom3i73isw4bVG3EPffcg7e//e2YmJhAT09PXfFYaxC1AWwkiMeimZplJqR0FxtMzIlz4UKloKsm44zf0Y6eZmJDqRxy4di47wwbVQ5TcPrvpShbJ+Pm68ETFwuesQt9MqifsJSqxjzhmVRuaQ4S9hoxlqh2U0baInlrO4GMByhU5AHOWCzVGwWSRlPOzEUneeWhhBOJI/gt17n4AosW0IQRxGhnfBj30ZQwI213fBJr7Ynj5Djjkou0ksYrqj369PkoocqcjIG+oiZTZrrwAY+OCwyp9qa4IJH1ZVKhrlI2maJwTX3LOYbmMZoTQjKCeKFVI4NyMhmfqeZaqDF+gqBzBpET7aU0Po3jD1Rcf/31eOc735mWD5kprEFkYWFhYWExX2FjiIx48cUXcc0117TFGAKsQaRge9CN8cBD0ZG0Sj7JRmCvkM6DtDcaiTQqlFnIVBsHZtdnSxiqTBihUGwJpWSqxcaeowz59WuoD0B0DUHV/F14taewT0LLiD1BiqIcrQbp+5KzC8KjrQSO0uWq9FIfdKBXkdL12VribmdP0Ng4nYTGL7fuRasJHRQuYSCPs5pF8x+Nyme0mwJVztcETeb0yaSAam98L1d65OflAXmYwqKzUGIPeUaT/3pZeR+7iufGQJm5+u00aO2+3J+fkecUc4nqbSaNNPYQcekf0jRz/PoJUfEmVeg44u1Duu61cvwarCoeMwospzFXqvG+QbDve8aiM1izZg0ef/xxvOIVr2hLf9YgIizNjKE7o05Qk8nLlGuTcRSNi0aThATHGI0SwZ8lQ8SUgq9Ld+d9c64cVTXYdwZEqKTu69s5SktlkcapJK+3QrdOjlL0WcSsShMJu5iFqBtz/coqhl3s48xP1X8XfgEoMRPcXx9PiqR468Rvktyml+UpKBMlonR9BbrYIlNMgSZFH7CxRXONpmqITWPfGcFrbBzVkuKtFRkWB3r0QQLLCAuURUbPmleMD2A6zCjAaDCCHM0l8WhhYVq46RZjHINYM8xdSsFWqp0YlEXbQLOT+CQL0kJDEfIcpRhpSjHZJGTAIDw5K7AxRAp+8IMfpO03velNeP/7349f/epXWLVqFXyil4G4YGwrsAaRhYWFhYXFfIWlzBRccMEFdds++clP1m1zHAdBi3pR1iAiVPcSZWSw3hDDRI1xPR2xT56ouIpLqw6lPhmX6yAdjrR0B2Vp0OqtHEnLuOjKumY/GT4ibQ/lY49HjbKxchQwnXEb3zyCVhsDebjIK9RNVaLZ/V2uUoZHVbOq8xQXkbbJSB12XP6D92VJEdpeIk+OmyynvVJ/ui3zoix74hRlJ9EkqULWNPeCQWzP4UEdYCu1/Q1KYDNRmUZo6CwTBar0pznuvspd+nNw8LSib0XPQ15GSrtBvJ0dOqUlLPhF91iF7vV+Ofd4viiZoQ925nlFcYZqMr3YcxOxN4nDAJQkCbldZLIGmoyvunPT+JRz1kQZIH7O6HR8ar5otL8I0nYMgeVM7adlhzqZZWahYO/U+nbCGkQNIFLfmWZqhibjOCMkRg6/MvOO9HNPRpQaovTBwmRhcm6m0aQRxLFCPqWMnrHgmbT9yGjMsxYo7d5VaDeKKXDY/U2xAcl2TtFn8L6mrDV5aSjGwRBOVOmniZoKxDrJhKaUaFJqo9GYKM6I1XunBuKj3aq8/sVJGWPkDo/RzrJWHL/wHD++DhGl7pupD7ndxhbNU2iMGZUykzfWmvzb5T5szGhUptcU1sptpG7Px0Wm1axfb2xT6ULluQjyZFCQEcQGgzA6OLNMl1LP+wKqQKswViKe51y+dmxUGeis5KHPGIwdNoJ48gw4rb6uoWapcnadMh0V6q81f9dQUb6up/aj2Xsn18N6iIz4p3/6J/zZn/0Zcjn1HVqpVHD33Xe3nHZvzVwLCwsLC4v5iqgNfwcoLrvsMoyMjNRtHxsbw2WXXdZyf9ZD1ACTUexe6HFL2s9NlJkizJjswx4TptSY4mLwPhOJwIhJp8gUxJiniMvju18EAGyvSi8Ie5YYvL1MAeUiuJuDrlnEbKQiXTC8osxSgHWUlBeosiudMjwUhxmXAODFXineHukXpWpWGItCarLSQhJ8rCyW6ZtZqhfgkocoqmmEHE2Bt5ypRr9XZKWKWgIHpPPy/P7w200fZwyONmR6afc3ZYU1Crw2fG7yCnFwP9/46b3K7A57V7vJy0seID9PSRLJs8jZU5wVpvMExV+hfpJR5jT2Cnn83JLXWKO/Zsp6NQV6K9SWs9d/oV4Pp0EgNY8vMlHarexr0VFEUaT1QG7ZsgV9fX2aI/YNaxARArgI4GKM1M0We+PpZwLKA2wQVWwFJjqOM9vSyUZ508smG0+lSI20F1iUGU361ce7sBHHgo6q0GP9LcMTaF9WGg6cjq/UYBPXj+iraln2q0w2zOXzqZN0W5fTag0vCVVsUTZFsViu38vGUa1X3gf+oMxtdgty4NHuYTFouY05boPaNccWCfqMX46NXvQHAxQjiNGCwOKcGkEmNFNtk2i1sFveb2FSyJUfYa9Ei69Jik1kaQwaqhBP5YUMw0SZ6fbhmUQRrzUUQ2bIy0AUtDHbjeks3kfE/9AWXmjxIqRBaGKkqZG293bRjgzisbMCm2VWhxNOOAGO48BxHJx55pnI0PMSBAE2bdqEc845p+V+rUFkYWFhYWExT2GVqushMs2eeOIJrFmzBt3dshpBNpvF4YcfjgsvvLDlfqdlEN1xxx246KKL2qYOOV8gqt33EIUlPEO8+mE6Kc8ijZSJxl6VSrKOEvQb0Fi4Md6n3rJnL5RJp8hEgwkcmt2dtsdIvGckkL8ne32KngzOFH2bvExTVAOtxmOlFaPIPqvCQCdxmQEOBuUknEyyD8nx8yV1ORFMv2BEphT/gyuEc0AmC1JiUVfa9IpUJ000xmX5D5Tl/WP0FhlEHy3aCyUTjEpmzBsYAo6dbnm/lReRhyi5bdirqdxAnsHDQgHKnkZ40RhIzXXDNJpEirfc4Ikw9S08wezxUS6HKXGMn2evPtvN8QxeIY2nB5DepYDoNSWTLdQNyj61c4kbb7wRAHD44Yfjz/7sz5DP5xsc0RymZRB9+MMfxjXXXIO3ve1tuPzyy3Hqqae2ZTDzBVy8VdBIHr/LoJ8w+KkNaHtXkm5fCiQN1UVGF1NcTJMxdAViTWBjhdvCCGumKCxPoLr9y4GelqtQSr8ai1A/EZrnFI4R0OfQCqMpzNJvQfQZxxO50p5DlhLHBCvIE2WQ1QclBXwN+CdfGlNp3qRcoTjbpNAjZ6cZC8cK44heDFbEUaWvuDhqK9dDiSEySSN0SnhRB6LPHHL7g2jZGhnsgjaeWiKPq/Wy0c39UVwQG0SJYeMbKDOTQcQQYq2m+B8GG1KKwGIk5laeG/THKfNHA7qqGUZSsbCSRVdomBe1Qck2y2xe4JJLLgEAPP7443j66afhOA6OOeYYnHjiidPqb1pBL1u2bMGdd96JPXv24A1veAN+7/d+D5/+9Kexbdu2aQ3CwsLCwsLCwqIVvPjii3j961+Pk046Ce973/twzTXX4LWvfS1e97rXYfPmzS33Ny0Pked5OP/883H++edjx44duPPOO3HHHXfg4x//OM455xxcfvnlePOb3wzXnV6Q8VzBdaL6FVHyz2Yq3Pvkx/ZpCTGReID6PSnuN8npTkofkutRNYf2fS3DFvbl72jyFjEUj1jS5uDvGvXRSmC5Gvyo30eJZ+XfxhHBpRRsSdlpnqJZJLdzZfDUn86rdF5s0/hcpY/6DCCHIr49ojuUVf+odE/pqDTFU0Er6YPNW3SW+zYAqkdnut97Rt4fXTD1dPszUWNMnQ4uStvlw/rTdkTnDLOJV4WSXmvydoO3kNyhBBFIDQBdWf0+AibPboYz0ZLtSiA1PfuRwcvEtQ4beZc4kLopr0+6s2GzLjuN+nYMwdimRJZOwcEMY4jaNpL5h8suuwzVahVPP/00jj76aADAM888g3e+8524/PLLcd9997XU34yDqgcHB3HaaafhmWeewW9+8xs8+eSTuPTSS9Hf34/bb78dZ5xxxkxP0TFkESIL1fgxigs2ABsRgoKbIGqsYqKtiK7TxQKVQFQVU3Sc5k/GkUKDJQfwOZ4YOyxt9/pylp0kSmx5XsYcCXCs0ATVB9tdlurOU1RYaaoq24HO5a0kjhhSlMn4SfegGCPOQuO6Zo6eUYAjhsRpwXR5OQ6JJ1NO84x8EWNGJ18ki3F6o77+uD3DqIMxrsjm6HdMyLKFDLbm+qu/l90uir3sl6nB1SEph1HtIsFGurXSGCK6JdwyLYYoW7N3wUTaZvFDYYhkHD3v08gI4j5aTZlXikJrPudxstJ9wzR3Q+yRApPBk56DPjb1J/o4ADO39kf853/+JzZs2JAaQwBw9NFH49Zbb8Vpp53Wcn/Tfvq3b9+Oz372szj22GNxxhlnYHR0FD/84Q+xadMmvPTSS3jrW9+a8nsWFhYWFhYW04BIu5/J3wGKww47DNVqtW57rVbDIYcc0nJ/0/IQvfnNb8aPfvQjHHXUUbjiiivwjne8AwMDUqelUCjg+uuvx+c///npdD9ncJ34L4h4W/KPJlyWnmGnvMbTMwHSuDF4AFhbqMuJg7C5kj0HY2fpHKHBzvU0K8LX98nSHv9n1/Fpe7yqLycymEQl9/syq2p3Va54TStKnzgnseI1VbY2CagpQbbiA588N+QtCnL67aonqn4be6/YQxTWTH0k2zNMo9Hqvl9eG4f0ZBT9FuEtUtJnWAdFDuSgoM80XprIEHBuCrxOP28mkLqRV6hVmkzjFXKyRJFTKEHQJ++P0iLK0CzIfaoFDvoXHVLn5Dn1svI5Yw9Lb0F6f8Vz2YwXh1Gh51V4bEylPdizbvIiifNoPcZ7Qcn64owyUVONaT7+Ofk42mxgMPWgaVNogtrSHfMDt9xyC66++mp86UtfwoknngjHcfD444/jfe97Hz772c+23N+0DKLBwUGsX78eq1evNu6zdOlSbNq0aTrdzxnCqF7xuZksCh10cyhPGGycmAwp9dikHhqnwSru59ZqrQmwIbWiKKmxJ4eXpe3Hd0ha7ZCeEQDAkd070m19voyN4kw6hSZjYcYkjsA18PRKRompLJh4CbCYmk/GGItCkm2nS1fmYbARxIl0ilGlwNV0IptRngysKp38kIVp00viiaKxcXkc+e9dKu4ZVfYd/8EQsTh1oDfGvDaquGZc41A3OJq0cPXzFp/lVvY3xQglv52aQSZp5fISKiBM56vRPcv0r2jzPR3SooAV4bO+bHMRZx1MCxmGGi/kJP/VP6DTVXJmyoylOlRjRjNvGE6nyHaYplmxADPQ9gqVlsw3TieFGS2MuPTSSzE5OYmTTz45FWes1WrIZDJ45zvfiXe+853pvrt314d+7I1pGURf//rX8e///u/4yEc+gh07dtRVn/3Hf/xHOI6DFStWTKd7CwsLCwsLC8B6iPaBL3zhC23tb1oG0Sc/+Ul84hOfwGte8xosXbrUWM14f0MAJ/0TMK2WBJrx7oh9eF+udm8cj1K3LDY6h0k8URGIdKTnoEo/ayP9ItcQWMku7xqt1LZN9NTtu7Qwkraz5GJhnRMuEyBc5C6tiHN5eT2qVcpaC/TjDxMRNUV4jf/BhxEFF5DHRlw+9gS5Bq8QxZBDe8no1CFVJ3er5O3iumweDVBozpCHSPE4GFJsONBYHkdelQwH4Df2Gmr7IyiUVAv1xJoBn1vQXKzb5Pr6qUoZUysB0ZqK9C2jmXmvktzXPVKnKlwg08ICn56zPN8f1NYE+LJXCF2G+mVEU7uarC/T3Jal4xRdMQ6qTkMJGl8DU0kPcVs3Q6+xJpHiDU88Skp5jZqhbIjJyzjPDQarVG1Gu+OUp2UQffnLX8Ydd9yBtWvXtnUw8wXNGDnT2denO7OH1AKrBvVp3XkO96XoX4nSTyqRwQhq4WE4ofhC2v7t+GDaLvjSWBmdil/eOwxPWTFTobY8rhzQ+JLJy5RRwi5xjjOqVWhG07msMzRhKx+QgUvpyqkwI6fUs0FkyE7TKohTDTQ2glRXPn1HjjPK1UswcHFPTtFXjBxGJF4MeqNFF18D7KXenBgJprgchbZqgywAn1uJ9RHj4G0tBm2I7zBtg8nYcYvGUzb5vYgyK1MBYVZJDw0/LW8XlFlIMXLZLlKSZ8osozeIRHaZzkgCmgsTEPsztdtqRq7YPzLQU4xqlWQtaN4QPwcXfFXoNTYcuanEFTYY9wFsUBwIeO6553D77bfjueeewxe/+EUMDg7i3nvvxfLly3Hssce21Ne0ZohKpXLAqVNbWFhYWFjMO0Rt+DtAsX79eqxatQo//elP8d3vfhfj47GX/Re/+EVa3qMVTMtD9K53vQt33XUXPv7xj0/n8AMW7HnXeY5UbSLSBVE0hPbdBws3soeIg7TzkJ4ZRbeoAbjvV3btTNu7puSKVqzOhidlMCivKAfyMvuMV51KUGfiEClR0DXr/NSaWWimQdWGlSHvSxeV5Z9E5XBVjFG2lXEoq0g6p1PfhwLTQpTp0J44QtZdeaj8/PkX9f0x1aYsp+MvpgSk14jWIs+N4plpQBeZPo9CfcBzSn01UU3elAGm9QYZvTvyx9X1ZwzGboYmm2YoAHv3RDB1VJRR0LUiUcLkWeQ2B00r92zyyEc9JOBKv3khK5/93px0h+Y1QdXTTRhpBmr2mQTPb35Cg3GWWY3mNL69M+TtCjUeJcXjw7XalFprhsE2Mhh0fXTSyLAxREZ86EMfwqc+9Slcd9116OmR4RxveMMb8MUvfrHl/qZlEJVKJXz1q1/FAw88gOOPPx6+r750P/e5z02n23kNjitqhSYD9G64CitLt+Bq9g1vXiV1n7oT6foAUNL45E0U3Sndz6btMike/vjFI+JtJAA3CpkGY0q1N6X4NgIfx27xtE00WcRhWWw38MuPap8JFs8xvRhoyDUWeuQJOc1U48w4eukratdEL/gc5xDv49OLlN/jRvqMDAC5XX+d1+Tfrj1OgTBEmqCWVPqM70mhHDgDeqqFNHjHnbG27F7nnrkRpPSRFMCuLqAFhM9GkNyVDR+mblmJOigk8Yh5Up4uyGecn79uoq91cTpsWJgos9k0moQh1Eyh65aEGfn5NEpuaPozzFGO7rgDWNtnf8KTTz6Ju+66q2774sWLsWvXrpb7m9Zs8otf/AK///u/DwB46qmnlM8OlABrCwsLCwuLuYYNqjajv78fW7duxcqVK5XtP//5zzsnzPjggw9O57B5j70zzAC5QlLLeSjCFLJNXgJKEknJMZMniL00jVZkHlFtPRQhPEGFvHgf1j6qOpqfu4lg1df1/iZt/2YsDrb+9ciQPHdZ7+buzus1c1JBNiX7pHFmn+KGF9XuefxMJ5FYnbLAo/OIRD+mKjga29FrU4LJBy9ZnLtVPd3BAdZ8nmyFPD2J58ibkCt9U3SpyVskT0jfL6uvl8eIqvLbaD1HTWVgMafTYPbl/kz7drr6fDsWcdSHU5TeIISxl7TaK10+nE0WZDnLTB6mlOvgkjS98e9VzOp1hRYWJrTbGWKOGanIE1Zq8iR9+am6ffduCyjPJP2cpswxpXSHmFs5Q8wgwBgaqC+mbuWgqEnzACpca63+MKPXJ9K0O0qZOTPzSB3A3qyLL74YH/zgB/Htb38bjuMgDEP85Cc/wQ033IB3vOMdLffXZn/z/o0wchBGjvaFHCgUF22nm01RpNY8MEEL6q1775MaETSO31akUTKUGdb2xxOTVrCR6AlTfTXGyQPPAwCe/p0UbkRZHjcZyUmWJzTOftHRZyELKRpEzxzNnKhklygzsqPd7pDh4k0kqfusdl3m4+h8/ILSJK6wAcyFYE2ZN3wJhKEUdElLKkP1rqJJ+YJSCtFqjCM9jbYXlD544G2YOFvpQ1GL5h+3jW+bWfRYKzQZG5NU3Ld8WKzgz8rTahybvq0ILxLNK75OLqsv1sqZnY0yxwq077ZhWUctmyHpDL6ZNVCMliaof362BVXGP1EztdEixeJJZwIaFB9Im7kWIom4irlCEXHkAMJQ07eNIZoX+Ou//mtceumlOOSQQxBFEV71qlehVqvh7W9/Oz72sY+13J81iCwsLCwsLCz2O/i+j29961v4q7/6K/zsZz9DGIY44YQTcOSRR06rP2sQaaAIiWlWPfw5ewYUPSGNF6TaRPAgo5EoJGNXICPsF3ujaZtXbbpaZlUSXgsNekhMwR1b2AIAGFo6nG7b9uwi2eGEvKWmWFSxX3o5GgVYK7WKTDuJekxKgC2tIvncBsFGsfh1KuQVUoKFZZNpC94uElr4uCoxVR4FeueGacVON46bBNnWeqSLwBvoT9tc9iEakb8tQ/FWNAIvyalv0YfRs9QKmvHykPAidHQdu+JmMSts2jDQZMFCKcJY7Ym/F9Nk/NvzlMBeofIA32RExRfjG4q1wfi5zhg8OiE950JskeexQk56mXaNSw/Xof3Dso8Wgq1N1Jd+X33beI5GwdGu/t5zMnwi+kDnkeZtSsC2fkizCRtDpOK6667b5+ePPPJI2m41wcsaRNOArynWCgAViqXIRqTMrHmtN1KQBtQJQZxzLJSUVL8nU9x7XKJVGIoRVv+i2zB+VNr+g67n5fgUo1B+Ly8Z9/985QPptq9mX5+2f/cUBbKNy+OmHDnuYmIchYZaRa3AGALF7nFTHn9ybEZeRtQo/IONHK5xprjhk6/AStYehU5lpjjejI5jCi5x1Tucdr2ACubu2qMdvpJxpjGIGsYb7aO/GaMZ44Tre+kMqPloBPGpSX0avbJd6ZeWTbU7Ud1mjUnOJlOoMdqHaNwwL3+XBd1x3CAbGf25+sKtAFBTFjv7vk6D3eP7/LwZVA3Fmk3nFttNBhNvDblmoRJzJBq0s8nY4XgiTR9KvULl5Jr+OlnLzFJmCn7+858r/964cSOCIMDRRx8NAPjNb34Dz/Nw4okntty3NYgsLCwsLCws9gtwUtfnPvc59PT04Bvf+AYWLFgAANizZw8uu+wyvP71rzd1YYQ1iDTQaQ55FEpdUTwmobbdTq9Q3I777idPUCv6RYDMOGMa7WTSG9pZk4GV5lpriauEgrEvX/6TtP2xJ2QZB48ClKukFzPpxt6ifLd0pSgu9mZWX6kAEG0zedjZW0SrwGpfUsKgKr9LhhxtVdJ/4VU96VdKjz0vjunScWaZw2UwlKDvZF+ua9VFoptDkpJ0XtwhOy/LrLR2eHd0lFmrXqaGqFFWG2XBcbabki04TbST/lO8b+zVypAHpiDpzmqP3Ec4aZRsMun8U7xCHFTN92ympz5bsysrf3sul8OokXe4FbqrGape9MHnUDLIdNlf0AdeN9QYgkqH64KcjX3wdr4VdB4l7pdJAKbwQ/W/HcEMKbMDzUPE+Nu//Vvcd999qTEEAAsWLMCnPvUpnH322bj++utb6s8aRBqw+GErwmSm9PlGE0wjIwiQ8Ue8TRFjJFTZYNM9uTSJseEzSbNznoJfqprsM89gMB1z4vNp+9n1K9N2bhdlsyUzf4UyPfycfCFyFokSX6CbZE2ucoJjMJqiJKagtERex8wYFbPkpEFWV9DQHx7VSFOG5zZup3Qb05Q5ul5U+yobLEzbzp4x2a7Gv0c0JQdiMgZaiTdqK42GfUgB6BS4DXSYafy6sbayb92xSVyTMua85LiiXmkxTx4mY/iUzDGhLE3DICZLoWir/fKGi+jZKBakwSNihxSajG78VoygVmIU9+5DJ6bInytxgoY5NAjc+n0NqxolrpCZrWQYvNiIeGwKTUb9cUaZMIQMsUkdNX50sJSZEaOjo9i+fXtdzbIdO3ZgbGzMcJQZ1iAiuE5knCRUr5G+8vLefe29v0nhOnC4b/0+YjtPOjspkNpTCsdO1R2393cQyJK7g40jTzHGvLq2RxYCG3F/vvTRtH3jK6UsQPYZOfNn98TXrOzKl0u5l7w0Ob3GChpNsorhw0GptD1HL52kKjZ7jcI8Taxk83kcw0AvPDfZR4kJ4oxeeuGxV4gncDcZuFKugYPF6atUF8qXcHaq3jPAAdgYJ02adqay733OBgaW4v0x7Nuwj2YMmBb6aEb92xHGDwVMhwPymSstowr2HP9Fnj5RtZ41hgKWKWL7kD2ZWfI8UykKUY6jSIFqStxQoI8bUuQ3RLV7mhtMukGNjKrIsPAzLSR5f/G9mrk1TdXu08B7DnCnfcUzDqieZ0fxBom4ILnpQAtEPlDxJ3/yJ7jsssvwt3/7tzjllFMAxEHV73//+/HWt7615f6sQWRhYWFhYTFfYT1ERvzDP/wDbrjhBvx//9//h2riJc9kMrj88svxmc98puX+rEFE8BDBQ6R4UnSqys31xbFF+74jTfXJlOOS03Pq/nJfZh89WZKFQfuzVGBVIc5T/zKdQ2JxRroYWfmaofMQ8TnYU3Xp8TL98c7n35C2/ZH4v9lRcu9nODNHtoMjKF2fV34t/R769G0nI9LM5MdBhr7XFHkLyIuUIXpM/BwKJUIeJM4488q0gmYvgpAQYA0HDn0gMUm3Rn30SCrNFStl+l2cArklWLCxDZ6jVmg3x5/5NNOSrECrfbNXiDLHogWxNyjok9e50id/XFVlWu9BFF4/plkrveS17aJ7mjxELsXM9OblDdftxzcUe2MqxMExZVYjitmd5luxUciAY4gbUtPu9ceK7ZxtynSYScy1Ss+loL6UuEMlxsiwnYUZDdlx8wU27d6MYrGIv//7v8dnPvMZPPfcc4iiCEcccQS6uroaH6yBNYg00NFMvK0C/QPERpDJyGl0PhPFlVJmXIqDU289+ZJj6ovVp6XhIicgrnD/UnWBdruOFqwQR8STbZaKyR6d35q2h05+KW3vXB+rXLuU6esSPZUdke3xXdI4cvqIJsjUP+VKLALPiYZK9eJrRRV6IbKS9aT83rlheRjHfYhbQSlvynMtUSLlfjZs5HYRyK0EYNNbhF+2FSoBkaH9PT8xVPfQRTXE6zikpKzo/whjcYS4d47tqZgC7VtAlqwFptKmaZiZ6K6UmqPxO1ympE8mECjfkQpVVwYTg4iq07MRVC2SQa8oThN9lvwENcrQj0h5WqHJqN3do48RErF9bKiY0utNRlNWp1WkhNq0RoNNF8L44ec2Q4sepv94OyMUemPG0h50Pu6ixPeKsMzIiDNoFhklPCzmFF1dXTj++ONn3M/sLbssLCwsLCwsLPYTWA+RBrrgY14pseiiaR/dSq2VzDNA7y3iseXJi3OIoZZZK+dgVNkDpPF28XfhrLZSJJfKHGz99kNlsPUtr1oDAAieo0Br8grx6bLD0mYv50hVuSvxVjSxYFMUrDUrSYdoMhjShavd2s3pWJX6VPRUuVX9dh53LRmTepmZUpNb/Qna7rt1bVZJFkVjAcDlwrHs6dFkcjkLpacQnLVm8hDpBBY5yFWnQg0g4u01QyB9Azjk0XHY+5RLPItd5M7j79Inr1NAFG2tmyixfHxNlYDpHAdMy675Nwo0lFm1i+5BvsUMiQBZX16PHNUWyyauRcUrZHgIeI7Je81fXyXYugVFakZoygqjvsVl4C7YK8ROw2pNbu/ukvfysCgszRlkpuBpXSA1pNcnMvwWc+4VsjFEHYM1iAgihojRitZPO/Q9dDQZAJSS2ffFWn+6bdCT1AYbH5wVliduRqTV8zm4zccphhc0kyl9VVeh8XQUHVB05SR2ze//PwDA58tnyeN65a3Y/YK+ECaX2Aiz8QeurzdOmX5QUmx1RSI5NTcv+6t1UfmSEhmzVZ5wk74MMUQGUXPFlS9oFXP2Mf1GPKYyZd7kM8nYDCrqC2Q8kVeW+7hl+dt6Iwl3VybDhzKslJgkjkNixWZBVZFGkmIwkVHCL5qIy3jo0u65IC0VvmWKK+qRVGBlKKa7IjJmOHNPsYt5H4rjEtliYZa3yeN01Fjcn2wHySULivSDkwo1KJvMJcN8oCDjAPuz9ZoONUMZoGbmGLFPzWD8TzfeyDQOhcqmc1aSNhtVtUA/JlOhaNREH7xz47Y2ooHnAdNzq4kZnG3YGKLOwVJmFhYWFhYWFgc9rIdIA581hJKlh+IpYi9sE4GGjbLMTPtyKaeehB5jamyYRG48WiK5DdSzWdAxUAq6suYI2crsDWpAnynilKRmzecZysT82KpXbEm3/XLz0rQ97pD4Ha/ks4ZVZ7qtblNdH8oqMc3uIq+RRgUXAEI6t7I6FHSXaUXJTxg52hQvkrikdGk5cJuTz8oZyhyqyc798SDplwOzqT8ODM6z54soiiS4mL1GINot8sn7VyCXCGv6ZOMxOdRvdbH0IGW3Sa9mRN8FL5ECdxBfCIdEEFGg4qmDMiC61qMPHA+Tvtn7U6PvzXQi398cNC3ajQKmAVVDqtpD7e74PBHVI2MK16EIfI8yn3oVJWrytmlg0hNq5C1SApjJc2PyPrWCjEeeVgMNJmqSVapEhaP+872hZLCJOoA8LTVDcWnmBLfCcx7d9wqV1rjrWYH18nQE1iAiBHAQwNG6jBsJHAJqZlmjTDVTHwqdxRx6Mkk9V12cbuNssn6XKpQSOH1eiC1ORnImLzoyc2uAMtW4iCxDGFhs+FQj/W3ExR7zFEwj4oz+dGhjui3r/X7a3lhZkbadMVY8pM4FDabE5egNJpcspZCE2tIYInpBeURbVJnaoElWMaCS8zuG6tiKXWlSrdaVA+BbkAUbyfBS0ruTlz0LPjJYLDAk2o3e/3CTOI3Q178QgzyreFPZDbLcRSV3r0wyCkSHhn5f2vZH5b3nHL5M9j2ZbKe3JxtVYU4fkxRkyTBLDCGlsjz/Lj7/g/vQGERk+CgCi/S7BLS9Smn1YU5wqjRQw0s1m5WGKC8yWMqikfxHpoXsVpMY43ThKs+cITYxZOMoid2hz3lBEhB9ljFR4+JgKr9jvASGryj6CIm+ZDpXebaT0Xa6dIeNIeoMLGVmYWFhYWFhcdDDeogIE5EPJ3KVIGJZ3JUyQJiGMvA0FY2taQqYbgbC+zQSyIDShVlJM3CpDV2dIT5nYDj3qvzmtL1h8si0/TKlWC3yY50bHXUW9010DPRjEh44HvPqBc+l7Sd7JH0WbZXLc/aEh4lOCAdM8yrSpD2kZJxpXPIKFUcrRtBq1eFyALpLzRImnH1m+smTfVxDIhDrxnEFi/FlpJO0J+68ZwvVoOsi2qqLvAFEIzFN4CZ6TCY6iQOOq3l2fdV7VWp07vGlct/urbQv9eGPUS27vtjdwlpMgcErxGPl+m8i4Dwgbxh7i2oFDraW/XEmoBDVrFIMN5fdqPTVewoB8gphLz0b3fhdvVdFaWuSFpjSVo/jOoz7Xu8as16n6VFwDGMO6DnjbLFqNW4HhkBq7o+f1IlJdplOb6zKM+ruY9teH4ghdZI5s0HVnYM1iAjlMINM6KKLCptKI6LxI1Cit5+JPmuERsKMry88V3fM3pig2XmhI5WexxLff4k+5zR5NmCOzklRxQdKsnCeMIhGqGR3D1U25Uk4JOMo0LS7SMSR6bqFPbI9vlMaY2WaOCsJbcXqvkqsk0HV2uXYhnL8e7FRxZqb2R45vjJxIhGFdHhJ5psaVwQ9DE+bUE9QMuoM1JgpE63anRgiHCuUqzdUAPXlXe4jo2QqTM6nv9f53JVeOo9C3dVfDz5fpYcM2BLTHGxRiN/WxHHQrhSHpKTHJ/Qe03ms8s0K4mwsMvVVSUKVFMqMjCPFCMobOBRdnBob8V3yh877ct7JGqxjYcSYFiSqcUT3eqg3KLV9TNPKMGaWEUzGTwp+Vom+NvUnd9Abp0qqvUG41TAQ2eJgzqhumLMPS5l1DHNKmf3Hf/wH3vzmN2PZsmVwHAf/+q//qnweRRHWrVuHZcuWoVAo4IwzzsAvf/lLZZ9yuYyrr74aixYtQldXF84//3xs2bIFFhYWFhYWFhbNYk49RBMTE3j1q1+Nyy67DBdeeGHd57fccgs+97nP4Y477sBRRx2FT33qUzjrrLPwzDPPoKcnTuW49tprcc899+Duu+/GwoULcf311+O8887Dxo0b4RkE4UwY8KbQ7ak2os4zZPL4dCnlLvZNj5m0gHyjq7z5JUnekPJUTAKb2SvE3iIYvDtTFEA7GdZn9Zjc9GqAOHvPgmSb3h6/aPnP0vZX+s6V56FFsyirERSJJqPVYD5P5Usoi4V/CT8fd1iZktejRmU8xOcAUFwog9YnId0ETig8EbJfl/SSTEyELoDaYaeAKWOOzsPeDHF5JxfR+KfoXiJqqVrQdz4xGB+bHaOVPvF8tQL9tlySpLe+P20WHVSvFVNY7N3xSiJwtZ6qAPYKjmZtIaa+kr6VwOccu61kkzP6Ao03iG/5MEcB0+wV4vFRtpjwDDm0LZuTP3Q+J+/ToW6ZgdfnS89uLdr3PGYKYOb5I0PlOlIvUxNziqlv0Qd7bpgCL9Vojqn6dccBlEVmGIdS4d6gmZSCEiC4O9MzxZ5lR1PtXgHT7JrjZxuWMusc5tQgOvfcc3HuuedqP4uiCF/4whfw0Y9+FG9961sBAN/4xjewZMkS3HXXXbjyyisxMjKCr3/96/jmN7+JN77xjQCAO++8E8uXL8cDDzyANWvWzHiMjegu1zCnVKJ6g4cLs5qMFo4zUUUT3bptbMywcdFLIoglTQZYRWOc7I1tFZkNNEFviRfL/QCAwaycvKsNJmxgLyotuTascM3jGMjIelwr3/B82n56k8xESi8DZaE5XVTrjCYxVv1l4TdRVJINn+qU7K9WlePL0YsrPyBfVuVcfG28HZR1xXEjNb1xxJfdS34ufvEaKThDBpt48U8upX1ZLZh1D+nn4hptlT6RZk6G5R5KzSZDig0HRXWbKCUdqvTS8TibXBOL50+Q8ZHRGz7VIlNwcv/SwnrqTpEyKOm3KwZUIaHufB6H3sLl39zhfZL7MFuQ9w8bGT15eRHGq/Ki8iLEZ2MmudicTdZqvTGdkdPI8DHtz58r4omeISuMqa0GMU4KvUbD4FjBsBg/uxEbTCScakiAVQzUVCyS78FGFLilzA5IzNsss02bNmHbtm04++yz0225XA6nn346NmzYAADYuHEjqtWqss+yZctw3HHHpftYWFhYWFhYWDTCvA2q3rZtGwBgyZIlyvYlS5bghRdeSPfJZrNYsGBB3T7ieB3K5TLKVFpgdHQUQExX+XutlPLJv0u0+qG4UHicYUNZMR6JHwqrs6pQS8bhUR/sUoiPHQ5keQLWIaqSbfvfNXk9el25FBaeoVCh8/TnYy/NZE2uVruSaNRur76cALB39su+M9F4/KHB9fHnSx9L26Ul0vX+4z1HAwB2TMmg6xd2Dsgu6NJlSPyOPUeiNFdIaVyur9+XXfZdeemJyiXep9FROTYuJs5lPtjNXmMaJvHIZEhKSqmTZXDA6QTj2HPDddSMQc699ftz3baIKGSTt0XnwVIoM6ItdIXW4/PItoivrnTrz837stdKBJYzFO9PXt9WvleRg3Ojus+VB8at9wQBUFyBXjb+wuxtVOhcyrrqzclnqovEGDkgWtBgKgWmzzhj7w17lITwIvfBntNm9IR0nqOaYRyc4OBAczPz9aJn1ZgRSs184hWu0vUNTLXzKJg9Imo83ar8hnwgt536z2cb1kPUMcxbg0jA2cuVHkVR3ba90Wifm2++GZ/4xCfqtlcjJ/mTD/ZYcuf3UACLTwp7nqJgTbW7qN90KwvNGeo0mSCMlcWUjcXj3BVKQ0nh8plW0zgEWWKA6biFnjSIFubkOQuJQdSMyCRDF2dUobE1YxyxuOOZA08DAEr05n0w93tp++cvHCrHXJQGTFdOtsVlZ2PHMxhPSv0kDbwyGZlTZCRTzAmFbiHidOty/fVTDJtW6p4aDB9TSjEbBsIQ4fOx6rIvWVLVoODhJ33z+Pn1pKS1B/rtQkSSkj3hj5MhSzRZVd720KwfjIZlkNW//Jj6Sq+T2+obhV68yYtclYSQe3qu3oBh8LMjjJhGKfW87977C6OqFVXr+jHV768UfKZFBn9HNo48QYPyvck0L/S/UUCyFzVNLBO3Q6bduM3Glu6yK4FI1BQ/Xsv3xPRhY4g6h3lLmQ0NDQFAnadnx44dqddoaGgIlUoFe/bsMe6jw4c//GGMjIykf5s3bzbua2FhYWFhMWeI2vDXAm6++Wa89rWvRU9PDwYHB3HBBRfgmWeeUYfUpgzwPXv2YO3atejr60NfXx/Wrl2L4eHh1gbcRsxbD9HKlSsxNDSE+++/HyeccAIAoFKpYP369fj0pz8NADjxxBPh+z7uv/9+XHTRRQCArVu34qmnnsItt9xi7DuXyyGXyxk/Z+iCqstUqpwtSlOSQs4RHhG5YuN+wyY8LMILw96YCXI59DjS3c7ByhxsXUz2GYvk8t4nPqNIK1HOJuunjJdGpQMaZZbxPhyMzRpI7OEyeYvEKpf7/cOB36TtJzYfkrZLU/K7cBBrMUsuCHE+8hbxipdXncWs9DKNixIVdJv4o7KdpT6mBuk37+Isl+S/dAOxl4YDfdlLw/un1JCSSUNtDb0GqDXaRLkCFn/kfZN4+rpz8wpUeIaYHmQNJIrVR0Y6HlXvTtJm2k0J6DaUzOAHML192bPAXiHOSOMSLcp1iuq38ZCNXoJ6qofrcrEXpEr32xRlZk3U5Jfszchnu5ZebH5e9OMwPavCu8NZaErbJBCpBETHbc4EKweUzcnZZMpzJMchjlU8tK5+FlVqoJGnR1xf1ixSD1TcO7LJXjzN2CI+ITeFU6uDHqJOY/369Xjve9+L1772tajVavjoRz+Ks88+G7/61a/Q1RW7ZNuVAX7xxRdjy5YtuPfeewEA7373u7F27Vrcc889c/Ld59QgGh8fx7PPPpv+e9OmTXjiiScwMDCAww47DNdeey1uuukmHHnkkTjyyCNx0003oVgs4uKLLwYA9PX14fLLL8f111+PhQsXYmBgADfccANWrVqVZp1NBzpRRZUikqjwg2roL0iOqBpmVs5UaxRbxCrZeTJmSvRTMo3ExoUwlJieUr+rbA+HkvTLKbFKibqs4bvwdWKDp0zGjDBi6s2R5HO6wln6jmwcCbrNMxSyXdwvKb9tzy9M27sz8nsNLYgtlx5Kny5XGz8SugwfjhXibLGMtCWRf5mMWXrBVxbE/dUq/LbQU2o1EhHkGCGkE7XcpLzo9SEuanxSVN+H1kAA1Ay2sH6z0i9TGKxaTHScAjEO+ilcw83CRpNaq2zfD5LpOyovOrf+cxP/4DR4QUaGbCw2BipUrNcovJhqNGi2Ya/4QGWs9ZR1U0aQwb0gDBeuTdZMtpunCKa6dceZBBg5I00xXMT5avw59cfn4wNpEtdFVyjbNN/F6SS30uEYImGcCNx+++0YHBzExo0b8Yd/+IdtywB/+umnce+99+KRRx7BySefDAD42te+htWrV+OZZ57B0UcfPYMvPT3MqUH0+OOP4w1veEP67+uuuw4AcMkll+COO+7ABz7wAUxNTeE973kP9uzZg5NPPhn33XdfaoECwOc//3lkMhlcdNFFmJqawplnnok77rijZQ0iCwsLCwuL+YZ2xRCJ5CGBZpmSkZERAMDAQJy00igD/Morr2yYAb5mzRo8/PDD6OvrS40hADjllFPQ19eHDRs2HHwG0RlnnKG6JveC4zhYt24d1q1bZ9wnn8/j1ltvxa233jrj8VQjF9XIVbwmfupeligp7mC53eQ1cZPVmeo9Ic0ORaBG37euhAiPcyzUByhXNVkdPvYdIAyoXqajCjKO69nSkmT8+6bDAJWu4/2DZHnF3qsy5PlM2kg6z1fOZW+XPG6yIvd1yPNSmZTumz3Z2FvUV5RunN68pCeYAuBVLK9yFxTi1LDdPTKzz6XK29RUaLDuFyhw/6j4A/YsOWWiBfRefy0NxlSV0QsCA0Q5FPauaOq9xTsZaCaNpyQyPBc6zxIgPUNM53ENMc5aM2bgievA/erzHxrTHy2VfNjrUDF/GAKL+b7KZuQX212W0eLdlBSQ0aTpqfMKU756HR/pLdJnhIYG8R4eay2sf4bVSvb643giFYe6Rpqs8cVuXNKDm/RsKJH+DTLHQs3vvx9SZsuXL1f+feONN+7z3QrE1OF1112H173udTjuuOMAtC8DfNu2bRgcHKw75+Dg4D6zxGcT8zaGaC4wmRR3rZJx0ZOkrecNL/1GwmXKNsN5Sw2KsZqgFGc0EnYSwigxGRy6LDRANWxEpleZjJMq3UbssmcDRlGoTYw+FpwzGVUmCm48CSTxHWlFLPBlUMqJQzJQ/uc0eY0MS8qstxD/tj1ZGVdkErxjZGgCryTZNK981Yvptj1T8hy7d1EO+ziJSLJgo+iOi4JS2xuR31GhiPjlkgzVHyXjr58ojJzhXmLbx9d8ztQdizs2elcZaCZ1/PvuhBW/1XEa4js4QywxphRFYv1hKjQfmBK6FHE/+sKOpr4eU2oFEvksUP2yLl8aPpWQ73X5+3M8kUAzGWcK9eWI4+SmLKfgG7QRQs28Z5r/HIMhwiPNJGmGHLenCKeabjKFEov3UdbVTdgqjkZ92niccnkbGE+zgTZRZps3b0Zvr9TZaMY7dNVVV+EXv/gFHnroobrP2pEBrtu/mX5mC/M2y8zCwsLCwuJgh6DMZvIHAL29vcpfI4Po6quvxg9+8AM8+OCDOPRQKWPSrgzwoaEhbN++ve68O3fu3GeW+GzCeogI1chDNfKwi8QPhY5PDwkc+oaARw7qZYt+c9BVt+9Cb6pu274gvCY6sUZAdV2zR4fpMeEB4jplJfKGcckPdqG/XJMxWyNJOlORyoWbSnfw9ciT6IwY3yStfMs0Dt/gQs+QF0l4b/jcI1Q3YmVhV9peslymZj2Ue0XanqzE5896kqroJ3E81miqGVbhvYl3abgs0526c/I6ZgflmCf65Pcde5EiipPFkEtaNRy0WV0hxxSRAB3KzMcl10PGjwMsRJclwbtAv/pKNee4FhtnRykaRwZ3i2jTML1xCnjlMTG9xxlgyTn5MfMm5XEZCmCvdVMfGurOaabmlJGHTD7mfyj90XVi8UHyPmQSYcYC6V+xV2hxQXo1ixm5z4BPKp0EnTfISNUb5inxQ7KHlumujKZUCCBpsrhvjQfcmJEm93EU3aX4nEx7MbUIA62paDeJ+0nhXOkeY2cXe60MNJ48kJpKllyYfI/GHvn9FVEU4eqrr8b3vvc9/PjHP8bKlSuVz9uVAb569WqMjIzg0UcfxUknnQQA+OlPf4qRkRGceuqpnfq6CqxBpIFK38RPCxdEDegpG/QmaV/54AyH0voWcTxdjpzwmoFuomOWoUQTVNXA+3PdsqyGKgubcBLuqEo36zhLLCdQjCOaWHn7joo0AESdpufG5Nt7xxh9XpLXOkPptMcskauJpYU40K+bCmKxUTWF+nECwGsX/Xfa/u/JOEgwS8E9RvrBMP+VkjgjptFcRSabmmQUVpfI61Qaj++VYJLlnSm2pFdex5BoGkWRN03vok0ev7D5BWAwEhJDxJuieK9uwxd36w0Y0+dBnl549AhkSMCySpSe7vWuGD6GOCkWx0zT/9n4ozHpaK34gPrtLolyKnEthhe9MIIAqWSepd+ejSBF9NSUStcAvEgypuArX1KoVurvdTZmMoooZL0chmIk8TgUg0FPgwmDjOMcOaaULzX3x8ZMTRzLx+mUQgFEeoZTGmFsxPE9zRITyT4NY5faiTZRZs3ive99L+666y58//vfR09PT+oJ6uvrQ6FQgOM4bckAP+aYY3DOOefgiiuuwFe+8hUAcdr9eeedNycB1YA1iCwsLCwsLOYvOmwQffnLXwYQJz0xbr/9dlx66aUA0LYM8G9961u45ppr0my0888/H7fddlvr37FNcKJ9pXkdJBgdHUVfXx/+7y9WoqvH1Qob9hPFlSUayhRszaKJIvOjX6lCT7WNDEHOOphKZnB7kiJX2UMkvEG8jb9XF2WnvViTXqF/3P76tH1I4pl5caov3XZ0t/TcMF3HNN5/7nxl2h4uxbTbQEF610wBzNvIc8Qrv5ULdgMADitKjjrn6WtcTAa6aGHpCRytSbqL60aV6DhFA4nKEogVL1NqJmrh+Z3SI9ZVlPeCeAJN+jT8hNao9pUi9pfsr+jJKZ8b0q00hciims5Hs5f+C6+aNRScEswcGrwqRPlxkDka0FymWFsORE/pQu6rENR/DiiUCdOWnkbsz+QZYA+R8AoBUgiUPSP5jHzOmKJtxltkpMEagD2fQerd4bmBvHW0ne/rCmVdiqBvDv7m+55Ld3B/gUb4lJ8nRYDRIJKqe2Opzws9RzX2EOlvnLSsCjuFgvpnixFOlvD85X+FkZERJVC5nRDvpWPecxO8XL7xAQYE5RKe/vuPzOpYDxRYDxFhSWYS3RlXm0rPhkiFZtAJpR6XnEzHwvqAtVJU0+7bDERqPmekKWrXhreEEi+UjJUFHauG1NwuMt44A2Vnubtu266KzKTqJSXC/55alLZ54i8mLwSeTHn83PdQj4z/2ToqH+b/+l2cQvrrbpm2ubRP6my8aoEM+GNabbgq44xGklxuJQPOUKDSZOSIYxWagakF6vuwRbvTNlOEok5ataanMBQKgO0GemEH4ieN9EYQv8j5feJ69S9YhUbl+k8GeQgt88Lj0MT2AAAobkjJKBPqzqyibbCR2PBi6i410ujF5o7Si7mPC6nR7099CyOHr7NJRNBkKA1PxvcY06UTZUnnTlTkPNFNBV276J5tBRx/V9W8yAE5b4Sq9gD1wdeGD9SLpAq4hvmI9+XrJIwYJrdrypiJJjMIW0oKSx4VcKaaEsukf47E76zGislmpDNCNc/NbMHBzJLa5iZfa/+ENYgsLCwsLCzmKzpMmR3MsAYRIYziP6afxhK1vB6KBi0ZApgDWtEMUbV4garBu8MeJyMllqxuuHQHf84rV65hxPpEwjOkiDtqvwmwkLLqluZH0vYLSSDyK4ov0/eSy6mXypJK+6+dy+T3opWr0BoZ7JbXiFeUk1TTSan7RHSRCHQt75KKfZuGpVt5y67+tN3XI71WrxqQ9F5PoukyRdluFVr4KZSZoTaTDorYHq22+XvpYKIFMrQa5evh6bZzcCm7/XmVzit5uqZyI7VdfX8K9UUelMiQwSb3Zf6PthNlFhaSTB723PiNV+Tch8hKUvrg4O4JupeYnRohCqgnKVNT5DoPspnJkygoUW1M30wlQqB8XTig2+3VZ5s2UwZjuhC0G9+NCkHXhLco7yVeXujFS7ldCmSbqTRdPodCh7lE87Ezi+e35Hd2aZxqQLccn55Ql1A8fvyBW79P1EkPUWT2kDZ7vEVzsAYRIYBTl9nFhpAAx9qwkcOxO7qYGJ7YOMYor9Tr2vfdWyJfrinuxpSa34yAmw6HZiXVs3lqAQB1onyJ4omeG5U0Gce4hFzzKJnERkrSmPE9/QuF1Xv7itJIm0wMoqCLMtwoJb1WIWG7KUlL/HZ4sewvH7+M+rNUPDPSxy00eilxNo4ST0TtYfq+5Yp89MZGEimDHjmO7rw+IzFL8SkVqrsmXgIcY6TETJiGTxll7mQ81qCnMZ3LRhA0rJqSrKUkONE/cpR1t5BeRklskWMo7McxS4rBw8aWqxmHkoFnMDj4pZ6k90ejNE3SrjUyqmoG6s5NMgT9gvzd+MXL98GzI/LZGVgs44kaGUemxZC6T/0LnLexcRQYzqemxMfjdj05F1ZC/euE5SsUxffkOQ8pdbbqymvKtd1Ck7RHct9zdh1Pc7yY4AVVYFJgF+Pkf2hkAZqSc7DY72ANIgsLCwsLi/kKS5l1DNYgIpQiD5nIxQQVlRICiqYyGuxqNnlsxCrLVOeLK9Wz6CNns4nt3AfTZ5y1xuPQ1i0jyo/1iwJIrwR/36NzW9P2jyrHxvsW5fhHq9Lzwas6U6ZUJhl3wKJK5ErnrBOuScYrVFGVXlkd0wqQhQ1r5Dl6eUSKZG7b2g8AyPXKANbDBmTWWp6DSBt4iEzCjYxFRbnq5ww73Tn4e001QSGKYzOkmVMtEZ1BK+WQt5N2j4jzd6dMtSpkM2J9Ir7tk5Wz0U2vBLNS0Cx5nEIn+V4mAUkOeDV4kaKEYnNIiymqsOuAPApUCkSh3TT10JRrwJl07DFgTarke+WzcqbIkdeTM9JqQWPvr2l7o329Bl4kl0VPlYBoyhyj/YWHODAET5vGoSt7Y3p2XPpdlOec5g0h0ugY6LqQ0iH53IEmSLsZalL0HfiNCLg2wxo1HYE1iAi1yEM1chWxRYEivYyrdHNWWIws0vPK6ZzMBU75c+qDjSDd5Jc1KAQqWWuaLDk+j0eUnyld3yOqkCe6sSQrxjR5VA1GkFKvKPkvT2KTRP9EBqqK968kIoaKcjNDUaLVzybZ7vg78nUep6yf0NcbKIyMRrHWZNiYqI/Jar1iNheWfXlUZvHlqQ5WqVIfk8RUAFNw5TLtSy99Nn5SfUpWpGYDhrPWM3Tdi/xyiA9wDHFPSpwGKw5Thl2mKyl2y8YJZx9xbBQbTboirBx7xG3FyCHjqIHIJF8Qhwwsr0g1yUhSQaTdm1Lte30ZQ9TttSbc2ggmkUbTdt3ngfIQ1+/rKpoF8j4wUshEnYv4Oo6tMx3nGQQiRVZaYKC6FVOLjuNZQzyXpjlNNx8505Q/sJjfsAaRhYWFhYXFPIUNqu4crEFE6HYr6HZdxRvkJ0tJdhdXDR4MU7V4UdOLPQRcxoOPY49NXqHM6u9q3pfH5Bv0RUoNFClMFeeXZ0bq9i1TUDhTXGOTMtMrUoKq2UsQj4m9FgEFQSv0DnmAdIKBDlc+11T0rtvMJSUSyom3lWv1gcrAXtk2BF3Vb5MnSOdNAqTXhIXvilT5/JAFw2n7hZ0Dsu+g/n5TApipzRlpAdFFtQG5qveSDCuvRPdVL/0WBbqQefJkkudF/OYul9cI9b8LX3cO8BVOCe6Xs4iCKnkDAoM7Kx2b/ndTqrEzxaXxJvK146B29np256VXiH87QbsWyUPENcsKFJScMdxjylgEZWPwZjTy/jBcUz0aBnPPLtNq8bGcYeqSh5wTOHzlRqSElMRbxKVzxmvSQ5thusvgORLXlb1MQain7Rm6Z9sz6IexsGQ6hkwHKTMbQ9QxWIOI4DsRfCeCRw+weETG6MHieJ2qIXaHqS+Rps8K0ewCZgPGlHbf44htlM4aOtp9ldR8jiNI3jQ69WpAdTsPZSRtyO+zkxa9AEBNVefJiCeVSpUmqVJ99pNS6JPpE5qAnBJROuy9T1KzOYtOERk0GEQKdEYmX1PDZKpm9STjacLdXjXEu+gUtpm6Y7plxWKZ8bdzXFJpo3uk4GQ6NqJ0ct16OsYhukt8FyV0h4vCUpwPGzOKYZP8Boo8gM+/rT5rSXk1J8cy9cRU25Qr772AVipKnFpST4xjdHyKrzIVQ+btnsY46srKMXGMWZ5ekHl66YuXfY5e+tyeLloxfIAmjZ9Gxzn1zwPHKJrijTI01iJdG2HUiZqCgHrt2KiquXpKTFBmfP2rBsFXBps44t5S6hHyXE61K9MFk6XMDkhYg8jCwsLCwmKewlJmnYM1iAg5J0LeicDuhVKy7FRpLarvw9XkabU0GtVXu89TMLNSoRp6bxFDjIOpMbUPCjjWlOsAgIkoqxlHvXDj3ufJ05jE6pY9Y4MFKbDIWjtTY0Sf6cpSkCvCo+BepaA468VwqYd8PA4/Tx4AokeqBj2eUFPOQqG4WFSPPFxcrVxHiRl1dwi8D3sfhCfKM6xQ2dvCukwDRenFO6QvpjXHyLM0Mkm6RxS0Di5Fwdc3CWZmbwwLN+aL0ssUGVbe6XGGEiKewYtXG5NeH+Fxiopyh96CDETm720qk6JNSCDKh3/PRnQnb2O6i0tVdFHZDd5f5w0yei3a/OZi706j7LSmMqwaeIvYz6foGmkEZhkLszL7sqxoGcnfyKgPlniO1EBq8qJ7jekzcW2YluP7o0RUdsGP586ar681NyuwlFnHYA0igg8HPhytc7mfJtNh2mEMZPiQkbDQlZN2BfUcdCnkVHt97I5ukmqmuKu6vxysGJPJ6GrmPEfl4xT8rdUF6bYdZVmXa4qzmYjuUtKZkyKc/kL5EvEMyq81MqSYYikW4hdTaKC42LhgA7ZRcrwulR0wGzxiu0KvMLVnetlq6LOI4pdqFBvDBsqeKWnkTJLgZHU8Nih6F0njtCtHopX0vXr75b2pywALDHXbTGJ22jpeXJiTw3zYOOK0e+ra70peOpoYKUCluFz6YZjCEi+0jJKdRAYRx8NoDP54e/334t+TnyNTYWE5Zv19MF0jqFUKrJGx2Ew6v2p0CBkQfciAKY2fs8yE8WNK12cUNFRbPKb6e4RpN1abVwvV1o9bWfTQQ9ydqc+4rXYyhsiiY7AGkYWFhYWFxTyFpcw6B2sQEXzHhe+4SvmMSrICnaSVLdNQ7AlS+2L3scjI0Isxcn8+ZZ/pPDkmr5BJODJLNJig0jgovIs+N3qceBWeFH4qkWbR8sKetP1LfyhtT+ZZG0n2JwJ8uQK4CRmumqB4WJy6bUp/LN4X6b1Iocbjwf2xh4IraLs67SEOMtZU9AbUFTRTWIXEk2OiobhEh5K1RkHClYR+HN0thSejBfLeZP0i1avGHiKn7nOm1NQgY/39JvoLDN4dzgrjdq5PUmLiOnApFvb08PVtFNjcZdD2YW8RPzu6EhcKDM4M9lroRBBnQoe14g1qRbjRM/RrypbV0Yns3WaExj4oQDnxEJky5pTj6DfSZeOZyhLlDNpeFbf+1Vck2rNR35U2a0btE5Yy6xisQUQoRyGykUqrZMVLgu6qXlJ0ZrFlZkE4TV70N2LIZuHYHYaOBjPFDXFbl6IPyKw0nvCGQ0m7FF3O8OAJXk5AC5Oitf9dkpkhq7q3pO3ePNUbK8q4EKbExAuNs350NFTc1r8IdcbDVImKtFLRV1FPCgB6qNBrLbGaFJrMoI7MdF1AE6uId6nRHG1UGabvGxAVWPXi83PdpdFhmTXm7aT4GqIea5Q+7w7GkzlTUjWDEafScXJ84rrzOFSDSfu11Jp1Ub2hqmScZfQvUEUtIDnWo7R7zhzitHa1kG6trs0vT1NtOpOkQitxN+2OC2q3EWQyfnQwGTllTa0yNUuV6UQuiKs3Vnr9eK4Yr8n7m8/B9KWJ5m9owBIKNL+NU5ZsI0FM3TzsZ2wM0YEIaxARAkQIEKFCN9BY4k1hFed+t0xt+bDs5qrONDkIjwwXdC1R2+Td0U0CvrJKM30PvedIbGdPFZfu6CFDr9og2oYLUR7b9VLafmXvy2l7+4iMLapQEcugnOj/jMproBTs5PmYLkFA5SK8BfFv4FGAcHlEGnfKfLxVBnePv0SB3kk6eP6wsXRblSZkLhBb4/GxN0iUquAUcv6NyPio0jXwNMYge40yL8nv4tHClWN0axR0LDwyXf3S4DPF6OSztGqmc1ZFm1LVS5PyxcHfxVUCs8mASq6ZoiBO1yZL6f9qsLvcXRjPRSpwy542rpje7etfZsIQ4ZgVk1fIBF1QtQktldSYZgp8M+dpxfBppV9ANXKqmmKrbBROUfkjDjjXGY69GbmIGq7KhYApRivQxCQpv63xuzQf82XCZFCvDm9x4MAaRBYWFhYWFvMUNoaoc7AGkQa8xhoOYo/CSzWZVTXgyUyeUiTbRVql7AzytE+8qghMBUBNVIQmM0RZ2Trssoe2vTuU49C5wotUs6ykWfXtDaGwzRTG1kpf2j62W3qLHsbKtB28LMchlJDJOQV/lLwdcnGpXJvMGAm1JbIGYa/edZ3dTZ4BCvNSvmJy/YJhOf7q4fJ6OAZlaa6rlTJ6TJFyHS9Dyj+rLYvis8GkvCBdI/J87CHi6xFIJxKipD+Oo+KYH6bJeJHuaygsphC5aGlEWYM8fu4h9fQRnafU1iPPkccq0gpNGvfBsVMupTlzthCnRHNKvECrXiGTynijfU3IJM9cM2nt00WrXiHduJnC52dbpRNZfTreznUdXZqP/GmKTyoCluTFybB3Kqz30kyQwrWg4uIRNy89YMJ2yqIV9Foz91LbYCmzjsEaRASRdj/G6sJJnAlTXNtq8gV6uC/fXGyIKFXkkwmc00tNPD27iXkSzaaB2Y0nVkXh2q1/SeQV1zelolIkMssC5OklK+jCgby0MraXe9P2Ybldct8uSd9sy0hXeMgGjxiHFF2GRxXYWcHaUQp5Jp8z7dZNAeRLZNvZJr9LVsZ/a8fj/pbiGRaTYdMv++MSIuIdwIZPlCMjggO32ShhA1YEiLPxRMaOL2VaFNSKdG1ygTIewJy2zgh1BhuNjSnJgH6LSPNbAJCGkEFviA0pU8kMXRq/KTW7xkWD6UXuauJCmok3aZSebqoab6JpaokF3gxNZnph6wyeZgKfpwtTTJWnXL/4/D70+yrHGfSLdEZiweOkEr32F8cjcgkhHZTjpmkc8W8rDOygiTIrFvsfrEFkYWFhYWExT+FEEZxo+obuTI492GANIsJoGAd35jUryWdLS9L2SV3PpW32Ck2QV4hXhL0iVd2wmuHVCgtAcv00k/CiQDMuXEGJ5Q0rL/YWKLWeNEHay7ukq2VnSbqUeVX32sX/nbb/7enF8jxJMLNpwR6Qh0XrfQDgluNro9RAo9pd7E2qdfG1Ia/biNhXfsqZ+8Ut5NHZKj1HE4drVoes+Fyix4o9HzR+5bsn3wXkPcmwV4jpJKYZx+R3KS+sH5Ip5Z/BGWBpunuZsugcHj8NmmpLRXTdxe/hsOCjq/cWKZmCmqw0E82kCgA2nwnG5zZRY436ayZFvBU04xXSCikaPDNeG2psuYa5hL108jwsetrai7fRtVYFLFnNn37/5GXPlJrp2pmujRi36fNXFnek7cmEp/Y9m2V2IMIaRISCG6HoRtgZ1GeDLSFqbCHFEO0IJBWUNdBgOmOmxy1p9lSNoOmCjSOOCxJu9gmDDL5ShoS+C2fYITHuBrMyM+vFyf66cwDAUI7oxH6aQCbFefSZZWzM+PJSo0b1S4VRFcnQJJVSM0wCPOeJr+Ua5jZWQ3AojqfnN5R9loxpail/ARoGlRuJqvummRyO4+jR3wfVHu1mJesr3WZQmXYcNoLk/jpdJi7dweN3uBQLpcenWXcG5XHFwDK8EKXGlF5CgLPMOM6kpmRPxu2CknbP97321IpOjg7tKKo6XSPIPKYm6Dh6IHT0YzNGECMNAzAYiLwwMmWntRJXxbGOPJ+KYqt8jkaGj2mfHE0EppCGPi8OA5jKWqXqAxHWILKwsLCwsJinsFlmnYM1iDRYTO7Qn5Xi7LIxytZiD0yPJz09rDg9SArWQqro+aoMxh4OpXBgvyuDjznIWVugEnrXMaPUIFC6Stt6SFNJyQaiVZhOOLKbvjerBZfJm8QrLkWLZjgJNKW4VyUphYN6yZHG+5cHnPqdWSuopvc+eRrHHOvNcRaaMnyDF0lkgOV2UY2mhURJTpKHhTOvuC0UvTOkXbWUAsT7ybNRJP0ioqr6euN7yBQuwPRUaCi2GiTeoIiDsXkhbaC4lPOI684ZlfTbu+RN4kDqSOed0tB5gOotUtSHAxLyy4Z1fSgB0QbPh6vL7JzFN4rJE9EI7OFomapqYX/TviK5gz3C/F3y9MDwPDAZ1Be9Vuh5g3jtGGXtMkQAuDGDV9mXlMxpTtMF26sFt+u9T4FBTHdWYCmzjsEaRIQgiv/48Ti5sAkAsJuoMTZU2Ajih0it8Bz/97CMpJBY4Xoy1Ke79ygPYvxfJa6oCZdzF1W2z2vEyIZpouEJSBV0lOfMJ7ELr87L+KDHKL2ewRPJABUdHd8cT4r8LuD5jNs8V9WkDSk/ZxqnargefJ00kwPPtUoGHKcUk0GkHROdwqP0dEHtxf/g7DmimTRj4ngdh+6PXJ80YEWBWwAY/u/Y2C4M6VPSAiXDjcZB+4g0eIVGI3FKHqfyGzFVmdF9GTqHiUpz9z1rM73GcgI9vrweXJxTKB53Gcsx6O8VXizkkpdeq3FDbEAJJWemznieaCZ+qZUYJ5NxYdqn0b6m44QhwllmbPiwwdHjyQXfcn932n62vKTu3CbKshGV6btc/JXmK9rOhk+fJxes4ntNUGqnakjPPC7LYv+ANYgsLCwsLCzmKSxl1jlYg4gQAnUhkF3JyqQnI4OIx4hX4awwqtyBsmZVWSFPS5ZqdPVxDSYKJB3mAGsh76IpxdEsdJlovUSZcWkR00pUnHOIrkfe07vHeZV17MJtafvRME6J0ukRAarniAOpOfNKLNpcFnQk7R6OA+evwt4gfzQ5h6yHqnqFyKHGC+hACeSu/9woOWPSVEqug5KNxU7DQX0Afqlcn7U4NU4Cdf1yFRxo7iUAqFE5kVRQUknKM9B8NFRtIhd9V65J5hhoMiVzLLkOnqJNRKemEw6XpdswLMntItj6kG7plR3w5fUwFQPVBVubir82I+IovEVKgDvNAyZvUSOYgqT5tmnFs9GqF0R4f03B0zwPcEA0e2wOy8ZlfrZUZV3EVqGb03gcXIR6GYmQ9XtyMhG/Bwd8c0ZwhViAbCepMgFLmXUM1iAilCMXfuQqD9kT5UMAqBPhoCeNgTCS7mCmz1TKLH7gltMbXcm6polwkl21GuOnmQr3JoxG2eQ4/eRnEoUsmgJoEizJjaZtnjB44j+sIF3lPxWbafjVPhJBzDMnRVlw/fQCLdeLGWbkT6GGsFDsEWetpRpwnOXPmeX0tTMGccSJQ6K6cbCdqhOT3Ht8SDK2IqbJHL3hUJmUE3W2Sw7QSRS7nZelQVTrkYZUjuqTlckI0sUcqbU4iV4zxBM5Wc4yi9sRZ6EZvouSBk/GYF6TwaMobVPXO0elomf0W9muHRp/967D5I+fUYwZvtcpDoYWOKnQo7LoIRXnJkQJdWhGWZoNKF0MC7/o84bn0/Qd2wk2fDwDLciUI49b0Il5Zc4wGJYN5jr+rhzHuMiXczXTZHzNmCoT4GvO85iYy5uhGNsF6yHqHDr3q1pYWFhYWFhYzFNYDxFhIvLhRC5+XR5Kt4kSHD6tYnZALwYzwCsQDkBMVjeTM1hVTLd2zjCtfsSq0+Qa5sDPkLNHInaL169uVxU3p22W0h/ISHfMb0vymlZEFpan/04RbVdWN5w5lngaeHHMNdB4mHzZOaOsJjz17LkhzoFj3ZXAa+oj/7JT9zlTcCykyCKSIK9K+iUNWVyKds8e+XsGOfm7iFIa/jh5dH4msxrxmuG0yYHNqjBjcg5FSJHvWXbp8A9TP1aXxqZkk9H5uO4aQ3gnJyYpyJU8ROys6+mRbsHCH2xP24Iyq9CPOFqVPxLTvOw5GqN9FmQnlPEAe9NkHAzc3irzjSisvCGImBEonq96r1sz42/kWZok3ruPgqfZqzJJc1C5QdC3aZ5rdH3zlDzST9Qon6OXsnmZBuMySwLsIWLNOPEemDTcu7MCS5l1DNYgIvS7FXS7Lg6jTAgBduWyQTFK6fgsbMgxNuJxasaoma7hw/FJTN2xwVNMCrNWFINI7ssPvijiujfCqJ66G6LsuZ1BL+0rx3Ry97Np+ztdJ8QN/qpMpSj1v4gipBgR8T7geZJjjzg+iQ0YFjYU25WyVxwmQ550jmViI0x8RX7fFLY7dZ/H55HXfeQo6iOhCBtlWsVjImNmXP62XrFWfz6iEMu/6E/bmePk7+UTlVZLBA8Doru4UG3o6ekuBWK74UXP5wsNIqSTpfjHq47Tj0h0Io9pckruw5l0NT9ud2WpeLFL8VI8PkMh0p1JUc/FOabIDdegiUwp7bkJplR6z0D16cAGgElUsdm+mt1HQM2ydfXtiA0lQeHrY7RaKVqrZLSScG4XxUjyXMhzeFVT1JqPK1JbhAR4Ha5lZmmvzsBSZhYWFhYWFhYHPayHqAGEB4UD7zwl4FGuLnlVMUYuCqEFZBJ4YzFGKCukfS8LTAHWakC0XCGL80xGcmwmYTglQFwjlqboGznsvpfn7iJagq+TGCoH3iq6O1TTi032kGucJV4k9u5wOyudIEr2GUN4i0zJPXxpWM6m1k0UUOI1ibjMB19SJRBZNrtekKvSyUOTPvr0ngql5leeqKhx+RuFST00csCgKp11yvWY+p38IHO4XE17CVUWkUiW4hHhrC+iNYV+kWnMLARZC/SaW0qSnqD/uuUPWiPvGpcTCWgc5aq8Hn4mHhMLNzL1WCPvVMYlL2qmnkqbqMkbqKDUsNLXaGs0qfI15SButbp78wHRbgseJIYpY9U07zTKat0dSK54MXnIef7QCdxOl25kMHX3LIU8HJ1/KW2/VF2QttkbLkIFfH7MyA3MiSK67LpZRxSZFVebPd6iKViDiFCNHFQjBzsCyauMJIKMymRlytLKyH0GyW0rJhJOkm4mm6KipOdGdZ+bJrQeMoJ6KB5kW2IZKCqtSjaIgcIgA6rfiXkYjiXi1H1GP6l1s4H1+qNj+uw//+touTNdHH4He1NkNNFlz0zWb1PeTzQH6NSpAcmUVPoMnxuyzDJTlDWzqO7UmFoiT54dIfqMS8Kx8TYcf8dyNwsm0vcmisihFPaI4pCEInaVjDUeJ9N/+R1y+0SX5AKLS+J7VolZYgFJMpRcJSMOGujjhiKlphqn98lmmBjKbPio2gmUwVkmJXDaPlyJv1cmS7EgRXkjFHwy1sko4XiiMPm+inFiSBVkg79GcUthcixn0THzyNQYUzc5Q6yNaJtoNCUjzTA/CAPLNQXaERRji7aLvnX9AmqMzkigUVQFEKYrI/m9lTEZ7C8dNcfn5sw3jg9iKk0HlxZ2PC8qCtzJPkEHxRptllnnYCkzCwsLCwsLi4Me1kNEyDkh8g5wbFaKCAqxwp2B1DjhFRu7U3nVxjXEsoleialOGe87TKsppqIGkqJZLBzXjDDj7oCzKdy643RZYwAwHErPAWuHiJVfj7sr3VakFXYzdZ9O7vsdAOCnAyvk2Eqc/qUvtcH1yUSQc2aSPmfBQVqU+uTd4The4SFiDxJni3HWGgs96mqchYYnqdLHwbt6L0ckyntQyQ/2/nCiF1NVEQdYJ5RZZkJfh4w9/NwubKEabP3xl8wQBRaRl8YkqhgE+74PefxBVe9lUiinxKtToXNHZb23yOEsPvJEZfPV+nHSj8/UHXuIOCtNPKPs8WEKLkelcIw1CDWeFyVTTXkW5Ti45lcrpTtCJRhb9sceFOGJKir6Ro0pIB21peqR6sfGtD1DjIPH9qr8i3JMdAP/15ScK5geE3OxknVH13SUHmjOnGUPkDiW51tlXmdPW6pDpP1KswObZdYxWIOIsCvIoxS4CuXUm2RbHZKVmWc7aTJlY+YQCmIZpolYGFUlw1szNGSIMc8t6p3xhGiizxgB7Z9HLTlHvcLx3hjypNgiZ+e8WIt5+J0UL7CC4gV6XE69ldeAabplfqwYW6vSC6/KLzz9mHT1xEyUmZI4RNtDrhGpuWRK2n2WY5bo3Nn6TCOuWZaZpJcw9eFSbBTHOwVJf9xHwHXPSCHaoXRfl+igMJdM1GQ0+hV6kRoy6ZTMvB3xxYmWkaJzrf67AlTEda/tIgOMDZGQi+6SURVQXJCbJxo32adAwpJsFPDtUaM4tIDuoWo5kcvIcVZb4wUEQ5yzRi9sboOMo4DoRF4UZJIL7NKz7yuGCsVDkeVYNswVQgwyZJ7SlD7PfWuEYhmmOB42ShrXUeOYwXqaqRlsq/anbTYWuw28txi3STGbwZSkS3NuF+LFZlYJJaAFq5KFFrdLUediiJxwr3luGsdbNAdLmVlYWFhYWFgc9LAeIsJLtT4Uax6WJx4MQK4S+yhweDGv0g3y/SVaVYg+uJK2KYCZVze8oskb3M46GDNGNEsF1g3Kk/bQLkW4TI5DZNKpIo4SQxnpWWLXNgedLkzqCIVj0lPllDl4mvWGyDOgu9S86Ge2iJxgnGWmaLCJmE6mpNizRJSZIrDIgpJO/baIVu8cVG0qLZLqedJxQV62K+SJCClzzOOMs+54Fe6OGDxtHGROC3a+TmJMgcFbp5QTUTwU1B8HQmsQKd4iopinSCA0odJYb4jFHZVK5ES7ZViryK2/1x1H34ei3UP1SVIPEVFtFebo2A3JXkhF4yj5D2X68HORczmDieoA0s2caUBnsSelSp6lcJquAdWDZUr+qO/bMwSf8/UVSSqAWkpDYHtVZjhw7TH2MnX5ci4Wc5PJQ8RZr8t9SfPrdJ7Yc2664uK7lDtYusNSZp2DNYgIR2V3ojvrKsbMz0orAQCP0MOyKi+VmYcoc4FT7Zl2e666GACQVdzI8nOTi5cNG6E43W/I6GKwETRKGWK7k8loOQkp8vhLGoGyeBzy4e9PvleepQc4DsKT49vM6fqcTZP8l40Ij+gdJdGE512mZir120xQ6pPxHJwMTxFu7DXMHrxZc0424pR6qGQEcbyTwrwIg42PI4bArTGlShZMgeighMb1avoLohiCZFvzO13EH9U8ec843fSSJuFDJRVQd8kMqtsq7aZ/qYQJPRxyqVKl0CvdN2S0uso+iZQBU22GF2U1YCqFRQLjdoZe/mwcuTS+kOiuDMUkuYmBxYYFxyQxvTZSy2i3q2KQ4qaFFiZay3frU8dNMMUs6Ywgnhu2VvrT9sY9h6Xtl8alFa/L7puoyBXLrmEZq9ndLR+e4xbLuM7T+qXIq6Dox0IZNPjTkVekbY4J6yHtjMVZSfOf2ftLAKoYrYlirCavTFO81GzAZpl1DtYgsrCwsLCwmK+wOkQdgzWINNhFAcNCbIwzJXZRxhlXvGY3dxFyJTToydWIAGdxVchNr4gccuBfC5QZYze5qIeT78IrxFcQxeXTUqKHFqUldvcLHRTF5Sz3fakmo5ZZvJGDz8WhnH1kcE6B3Q9MtwiqxyilwhQROdU4iyzVMqLjMhO0kqdMNQ4GZppJnMclD5eS+Ubjq3KNM/q+ovZZrYsC4HfWZ9QBQNhHfBcFJWMiCSKmW43Hyd+FvUIcqO4nzkIRoB239dldqp6Q3CWth8bbFJpMbleWrizGqZu/uT8KMlc8NpQdJ36vjKd3pbAniL1IVfbehKHYWR5HzwJ7HzJE0bkRe5QSz51hme7y+Gkf9mAF9Oyk842j965x9pNCYSl1zZoPclb6pgshvEj/tmNVuu1Xzx6StnMvER1OYxrTOQ55zPRGGuuSD+tP9siH5+XDZLs3oc842P2wokyAWUgppkfkZa27fk9u1yWkmEINikkAdtRJYUaLjsEaRATfieA7kSKq+AeF55PP5APQT5lUjAmizLi4q9h/wpDdxe7e0NXXIhJ1n6qGjA2mUnh8nKlWSugzNrr+k9JZGQupMOsYSQGISZEnFO6Px7E8Myw7pPllIhmHM66nRDJjdA04xoWNJnFpAv3nPF9xWAsbA5VEuDYgBWyHja68oeAlK2Yn42bF5OoAZddtlY9YeaEcVETZZ7rarhNklKCbZbDp3CWiepIYLDbAOJMtMrBdrAQg3pNuma4BSQGArgdfJyWmKlL+U3fCiHUjyGpSWLWKm4yZOUQ2YGhf6CG2K0ZGoDciQgP/xMaRDhlDjI6rUH3Jfzidn75XWck+04stsjHjJdfaFLtoio3SCkAqYrMSbPgg4jHJPrZUBgAAz+1YJMf/snxYs3KdpS5UNHFtvNZjAVFFMZ0Om6rJ85w08AL2Bl/TFbmX0/ZCWpjy9RD0mClTVxW47DwsZdY5WIPIwsLCwsJivsIGVXcM1iAiDIdZ1EIXy2lpXUHMfyw0BDO/WJPu27FIunj7I+mZEXQRU0ieJwObRx15XNbgihVeH9cQbGkKplxIHiIRkP3jSVlqnTNe1nT/UttHlTSJdOhy9DW4uPQIC9cJoceIdHdA2WQc2GwSFBSLQM5CUzSECvrrwXSLLkMMXmuzR3qsEnRNHoDl8l5imgmsM5S6M8gLQqKLwmMCAKA2f3evlGREEb3G5UaU24OHQR448TNyIDjTZwH9XrzQZ8HM9Gc2XEbHJOLI2xv8BEofdD1CpjgTYcaawSvEZXaUumuaNgs6KlBVCbVoVHGeRSFNgo6Nan0pY6ZBsafE8+o9Tp7huWWYvEWHJrpsJx4qE0ye7x1I21tfWpC2Mzspg7BS/zubPBjM7HmkuXXCwJa0vTQ7DAD47/LCdNshOZmdppQmou/CGX26MiRGb1HyW3hW3OeAhDWICFHkIIwcPFOVMUIiC6uHqKyJUD4Mr/RlwMhwqBclFOKOE5Tqw5MfG0Gm7AYh2CjEFYG94nIILO7I7eeqgwCA1xd/m27jzDgGGzCba3KiE/XJmCYbVWquyWvDhhJTaYsT1/XhR8rMkee3LE7bEafgc5vuVvESZvpKcc27+u2KurMj+qVt/LI1vcs0ho1TNezMooomY0Cc3jUYBUxxsdIzUVvi5aFkfHNWOF+7/7+9N4/SrKruv/cz19A1dPVU3dDdNAZklBCQwWBARQxRiTErThFIYgZiFJAYxeB6RRcC0aVhJYoJxFdN0OCbpWaZxB+xSRDlh4I2tDIJDTR003R19VRzPfN9/3juueez6zmnn6en6q6q812rV9+6z7n3njudu8937/3dnrE8eQyZlVd0ZDiJSL1T5ZnbJq6vG1d50rid18bjsUp322dPxX/l7QkbI0bVZcM+KvCj0ligO86oWdN14wOFEpWr21c52AG6cZgyn8b+TAyTWqcMqdZCionasqcum+pTym1QmPecGV/n9NmHbMegzSxjcVyOK9OxFPxTe1bYdWXEHqH/py2xrq9Xdtlxw6AdYUZXltz+wipVhyyz+YhgEAUEBAQEBBytCFlms4ZgEAE7a4tkspZxltIYiywTxDIUKkPCVz4jnol1YOZSZGxs5L4NDIjucNDbeeH+3OwTa7Adl9spIiJT8JNwv77ZLEUVjYw9Z5fdELahdkzNI99vgkeXdNprurUAlowTV7hpIgb4Zh3X2rVOvJNfHVHsgCt7SmQGm1FzrOM+wOjUPWyR0TCKPKwWGR1fiRBzi+hmUEHonqBql84TXWbcroo/FOvG627Oi9fWxwpV3IxYsj/lLoXrDqlIGWgxsRSMYX0ipSyJ4FiKf+JcGEjtCrZWDJhHjFG5sGJ2ie8kg66VC7xm30vWScs6Qnl1XS63201VhccNS4hA30NG+F4exy0lm3QsSh3V8sxOa97fq3s3J8sUbuT++jLuRBbX8cgQ9Wb2PYYSzBjOq7E617S+ErLM5iWCQQRkUnXJpFI6RbXFg08KmGJdruKuejuk0rbxco3F6RdMv6/4c9UTLElPNq3joMl97EahLypYDyJbzBg2FRhgu+vdTb+L6I9OtyM7bl23VY59LLsyWWb9rIgfYRY8dYn61d0fWPVxbsEfp2iAVZqNFhGZ8aFONf3uG3cpmqjjbhrHTKmPt6d/dGchO8dIC/hquPkyfZStkm5uyzgkbQTBtcu4q/2oF+bTbjT3LgMDuDYANxmOV8dzkHLMhJVYoyc+jIVeM0rh2sTauFP0q8ooYRsYP/G25RYZayJa0JF10ug6LMVZel2QG696xoEqNqRRZcYbvvsVj+vcV0PMPAw0WroRZ7mnaidiPE4BFnt/rFRNSZMBPHA1T2yUEkpMJmgYs3GuXanWQrauYxRnU4m6BYLLbPYQDKKAgICAgICjFSHLbNYQDCKgEmWlEmXUzMTQpbm6nXUsgQT8uBJQczMiPfGscwqzZ2oSaWl492zPuONGkErDmddxYHG21Xqc+3AxSkWU9hgBXU2mhzpJpiJ3xSUWN+MYlMJ3MWas0cRK5HomzyBou48oDoRWTJHPBeYpHZFykRm+wYMuMeodGUbGU2JE3KeiMuZcE3wySKpsBVkmR4kTxfh4SAkGWCtGyTAzmFQrzSJm/RTJcIHFM+6uqJkBm4lWM9datyfYne7GHNugH/HOI89BdEkPutLAOMU3qerJMiObpI6D9aYsCFnZqkeMUQWz4x2oOTLfKvVmloS/i4gsypad603QN8cdMjcluNTr+5HtxvGjWHdrrrlcZgTPtYQxsgxG2uXa9wWQq5pqbWSRuUBdN46/AfMPwSAC0lKXtKSkHzSxSdsknboTcsesWcbMD9YFq8QD9QDiAiYjygXbxUkok7n8/rq/9qV+pmIF0pgSyn2Y9TwGffZ03XVggFQDcmxFcB+kyrm+CwYR/fdmYFpTsC6z3kX2mu/dY11wdagxKwMm/shG+5k5knJ9nH3uKXx4Vbow1xu3msr0wfWiAKMvuys2cugxUTE1niynGrwc5vLS80EDxidf4BRA9xhV/A7RkxJl+MF29LPQvE7Efz2S68vfaZR4RK2VcbQf2V00xt3b8cbA6MLBlSK26mtjfRluubrnfqYRi9Wq9hkVs/k7i8XSaCpQSdthPCjDpw1jwbzDNG9oSPlCAnTh1cbWlP7g+MH1LFrL8c0Ycj0pxApx7EIPmaG7P6ARZL4H7VyjQ4XgMps9BIMoICAgICDgaEU9cs809mf7gLYQDCKgGOUkHWWkI7IzjO54xsXAaLId1PFRlegdk8AiZn0+McMKxHZaUbzMQhtHQHQZszO2MSzXpNhZ2ApUvqebzCcQabLZ+PsLZashZAIlG23tjJGZaGb2eFLh5WTdykVW/HHPLhuQqVgaVF5PXCgspKbcU57IYZc7y+fiUm4fu5ouJXMZ6CHIeDK9fCKSyYSXLjBHkHFjJ+7lmoPJ5ziY8e2buzPn0lx2Tv0+s6+s3VaL70sNwphpRwB5Yx8et2C8qDxV6n6iLWlDBHqn4oua9rjr2tEHMqU+0iqoGiwOmJ4Ma93xODEz5GOFiDQKkWlNInc5H1dbJnnQaUWGezoeszKK5mtmkmeilfvM5yYjY5NTTHG6absJsO9ToEDJFpFlMtJHHOeYXcfkjxozXT01KFthKg4xmIpmMcssxBDNGoJBBPSkp6U7nVEDgkkRL4KypUHEl3MM8TjdqkhrYxDrx6BYjEixQ8AQ+16FAcu46VjviLQ0jZllqDNGg81kkVU8af5KbBEGFmMDDGXfA7/6Mbm9djsMaM+Xl9t9F7bZ5djI7EABXBbHzHexKCwMIgromWtJo4XfWsYWqfgexhOZbZXjxS52QM2YHyW4P0yqP+UBVK0zT4p72pNy7oIyYFqMw8o15olfIlT8ktnW50JkoiAztlmLKv62qXpoVCTPeYxTR3YaPMxqH+rxpWFTb943XWCqyGwbfgTTwifiyItKl1g+03yTap64Ibq+isgsU8ViaRzVUk3rmJ2W8d28GmU5GvuuICbPF4NDw8c1KaORRCOTrjtf7JFp74sroruLbkFmz3Vlmn2+nBDmEJqwv5m9LpgwgCgoVc9LBIMoICAgICDgKEVKDjKG6JD1ZP7jqDaIbrzxRvnkJz+p1q1YsUKGhhrS7VEUySc/+Um54447ZO/evXLuuefKF7/4RTn11FMP6HilKC+ZKKNEE82siDVxKILImQbrnVUwWzI09iQy1Sp4TKn/Q7wMLQ/rPmsWOJyJrdW+ZJlUssn66sg21/HRx9CzNrrHdsdCj1Me3ZICaATOyB6afkWyfEbHlkY/0HZRzl678gT2jWwblXkTu2GUYCLcFqx95IWZoVbdLFNUocYNslV67KzT1Bnzle5QooqeMiO5CUNn2HXM/lL6Py3kbFyZZ40dYpneWhIsmeZ1Ko6dteSwnoxN4h1R0k98rnANfCO1uRxkoVz10kR0iZZaMxtEloHPRx2sTxqlW1oxRxRxZJ00tZyB2yqumUZGR4s08v2zmBD7DuRx4Q37VAZjTTdap0efqK60e5pdgYW0J+BYiU82lxMpRW7mK+fZXyVqZqoKHpcax1YlMol7arYlq08XGIO0VbYs+v2K/LCzr64+1Y6EPlFQqp41HNUGkYjIqaeeKvfee2/ydyZjX/LPfOYz8vnPf16++tWvyoknnig33XSTvPGNb5Snn35aenrcqef7Qi1KNf7hhdpda2Q8MZOqwngiYXo6BgSHscJwl4rD6JqJZilDkZG6dV/x5VwS11xrHNv2b9xhbI1hYOhN71sBdibMwMRjD2TtsTnw9sDlN1q2/d4TG1WDiF/ihyHfg3T9PYiNghus0NfYty99Ou1JpVbZW5ExqpA5xLR2xp9ASTtVcezPm2rvTpOnYVPpMUEzdl1u3G6Xgzgi43tcNqk39sjjFfTKBbTaBzfbj33QlaaMO3oQY8OXhpZyBfI6urskUfKswM1KdWoY15FH8sEly0ARR6Uy7RGkNNlnStdTpfa7n1MqZqfzCFpz2PlVj9uqA8aRy/hh22moZDPeiW41wsQFaWOGBoxnTKNIY3wj8zA4uD8KNvpkAcwxxxFEtyJnxxUe78WSzcQ9o2tLsmzGVIo4chLoCjGoh8CceYmj3iDKZrMyODjYtD6KIrntttvkhhtukLe//e0iIvK1r31NVqxYId/4xjfkz/7sz2a7qwEBAQEBAYcUIe1+9nDUG0SbNm2SVatWSaFQkHPPPVduvvlmOf7442Xz5s0yNDQkl1xySdK2UCjIhRdeKA8++OABGURGmNGnwWPgm/3QlVZTUvn1eDvM+rGPLhyPs7acqqeTbTp2DVNYMkc5h0w/t62B7VLMDNpyfRfSqrribZXMPWZszCwbR4A1GaWd1QZ7typrg7E7VWqWXWS1+wi0Wn1RTPsjyJVaMEo0j/XEcA9MXLtigrioiqqR6XEE75JZqDb/PmMXmlWJlxloTfanjrhRVa4Dl8xo/fiO0VYMaatgA94XH0sT70O5/FiRAoQl+6QC0c3vHreht09KvDGuVK/Ek9xCioiXl3qN7I3jePy6YH81uOBcukaFvNuFVPckBRCTKfswdMbubj7HHYg+pytNMVh0d7UICPZlk6n9xf3mu6/1f8AyebLP0vELaMaDRluEI+AhYp9c5UQGwJCTFdpRseEDmyZtksd9wyfYfmfjJA9cx/MXP58sr83vSpbJas8aQpbZrOGoNojOPfdc+ed//mc58cQTZceOHXLTTTfJa17zGnniiSeSOKIVK1aobVasWCEvvvjiPvdbKpWkVLIf+bGxRsp3R7oiHem6ok6LcfIq3Wg0Pti2N+2u+9MTj/w5jLzjGJP6ESMwQqpcpdPGxoyKZXLH8UxF1m+eQ8BIxpFqxLZ7QJunVTabfUxMdhmzyTgQDqQnmtqKuF132u/vicGhkdALgy3+GOWzcGXxI8d4BrQp48NlUrZrZXehL34ohcKMrtRxqmvTIPLE9LiUqH0zuWoXmuLbQoPCFGTFLdyH0COWKRcQG1u+GmOtao+pZZyrkgRQrjF3n5I2Phdd1f2sqH2Y+0GpA7qWePnRWRpErcB0eJ1NSOX5eB0uWB7XvMpHyedKc1iDnVlmYroz3CYq9t1m1hpdaQYZZey4rwGz2UymF8eJsap9x6ue2m18z834RqmAJXlqONhFGkEMXzAxixn1oNo+bS0OJMubRqw8yO5HrXFkToGZjM+caNv+4Yk/Tpb74wzeYhuyDXMVP/zhD+Wzn/2sbNiwQbZv3y7f+c535G1ve1vyezuxu6VSST784Q/Lv/7rv8r09LS84Q1vkNtvv12OPfbYpM3evXvl6quvlu9+97siInLZZZfJ3//930t/f/9snWoTjp4Kdg5ceuml8ru/+7ty+umny8UXXyz/9V//JSIN15hBasY0LoqipnUzccstt0hfX1/yb/Xq1Ye+8wEBAQEBAQeJVBQd9L/9weTkpJxxxhnyhS98wfm7id39whe+ID/96U9lcHBQ3vjGN8r4+HjS5tprr5XvfOc7cvfdd8sDDzwgExMT8pa3vEVqNWvlvuc975GNGzfKPffcI/fcc49s3LhRLr/88gO7SIcIRzVDNBPd3d1y+umny6ZNmxKLdWhoSFautJXSh4eHm1ijmfjYxz4m1113XfL32NiYrF69WibrBYnqGemH0pxxI5U9Ghac8VC7Zzko3D0xZUwxrw7MaMgKKWE1B11Ngcgiq2pjfbezHoPNllDuNWZ1gDJWdchw7oZRYp2hqaqdiXa0EWRpzoXM04V9v0yWf5iyGWnU98l02v515BvHoZuMQalKkwizObrSEjbAF2RccTM9SlQxWYnfUYJBuXFU5hVWG7rCE/hc97yljHc1cd7Km0DdI54XvDcsq+Ga9Po0LX26l+baqP3SJZVzXxuyPrn41akgLyKFhAVFYPD68gKaDqY8NxcZDrUSaTWH+5TXwH071Q1VDFzcjxKezSo+CnUKj1KcEstlEDpGE6mUsw9Fdx41y5CKofSLcJPysSuqCDqRrBFdToopdrBnZJOqHmaJ/aBr/MTuBstPFqcTYxcZ5GPze5JlNa64ypAIGSc7Do9N24dS3aN4ueukkWTdG1Y/kywzG9bUVKvMJkNUF6+OWNvb7wcuvfRSufTSS52/tRO7Ozo6Kl/+8pflX/7lX+Tiiy8WEZG77rpLVq9eLffee6+86U1vkqeeekruuece+clPfiLnnnuuiIjceeedcv7558vTTz8tr3zlKw/8fA8Cc8ogKpVK8tRTT8lrX/taWbdunQwODsr69evlzDPPFBGRcrks999/v/zN3/zNPvdTKBSkUGgusJSRumQkpQwb83LR/UPhQw409Jv30f8d/z+OL1sXXvZl+FrtwcBPI6IeGzxlfAVV5ptHbJEwbZakbf9Zp8cVszRz/UCqMcAsK1hlaZOKPxNMcz25Y1vTeh7juJz10xtjR0Sk1IV4KKRHG/dCRwEK2MgAqqnsM2f3kowhpl3XPNlCSohQ5ZyblVjniDHaF0yIloq74Yc3616v+N24jVLG9ihLK21KV2yRJw5JXRqP68vVTxpB2SkYAIyHUrXRGv937LTrql1wneLVVYKNjN2J96GUsdlnZhPCHZpyFHKlgdsOVPvY8KrRoPN8oPjspZRxZNtU4+w5pvkzI61YtUZOZ85eYLrSxsqN8c3EzswE0/x97rNEVNHhApuJbNr1kIk8OrZGREReHF+crBsesVZwLme3u3D1s8ny2YtesG0cDzDXrSvYh+iCYzcnyw/IumTZqIwv6YagLdx/jJ16ttRI8CmWqyLypOu0jlqY0BAD33dwX2gndnfDhg1SqVRUm1WrVslpp50mDz74oLzpTW+SH//4x9LX15cYQyIi5513nvT19cmDDz4YDCIXPvzhD8tb3/pWWbNmjQwPD8tNN90kY2NjcuWVV0oqlZJrr71Wbr75ZjnhhBPkhBNOkJtvvlm6urrkPe95zwEdL5eqSi4VqZmJCRrcVrEvLWdQQ9X+ZPn0wkvO/falG+0HMLZMqeBpNytEFqnoGFNoMGUwi2FgMys1j8VfEh/b5YM2zBp9ZSBkTqWoQtUXX+GtlSXJsplxTabALIGdWtFjqdeJCRinSLs3Hw8VK0SFYBhHGYdysIhIZ09jAJws2Vis8Yo14upkekixKPXj+HcyFYgnqlMKgDEiJPEMQcS4Fn6rqNiMsDHXLFcZTziGiofy3fJWxpuHjFGMWaT/F5kRLI7+uYwgEWsg8npQeqCIcDSVxo99J/eO1wvdTyFuLE0ZBYexwnvL4Hl/zj+WjeHl0NBq7hQWaciheyaGrASDqEbjKAe2Gc9bZ86OD0n8EZ8xz5cg61OZbvGw0IggizOK9+tnLzYMouqkPXh+2I5dJbx//108OVl+cqnNOj5naSNe9KTO7c6+MaiaOHX5jmTZGGyLEb+0PI8xCPGSB6pwfTA4ELfXzO1FpCk05BOf+ITceOON+7WvdmJ3h4aGJJ/Py+LFi5vamO2HhoZk+fLlMhPLly9P2hwJHNUG0UsvvSTvfve7ZdeuXbJs2TI577zz5Cc/+YmsXbtWREQ+8pGPyPT0tLz//e9Pgru+//3vH5AGUUBAQEBAwFGHQ5RltnXrVunt7U1W7y87RBxI7O7MNq727ezncOKoNojuvvvuff6eSqXkxhtv3G8r14eBzKR0ZzIq68TMztZkrQ+bLrXjc1bl9LmKzUx4AftYHdf6OgHZTpN4wJmiT+/DuKP+UQZ8e7eHiu5RhVTditP2eMxas7OzsscFZzLbmHU3iYARuskouDaKVKMt1QZbdE73c8k6XvNju0eS5c0ZyyxVIdJY72jsm3FDZIiUK9NTR8qAcUicmaehdk3BvjoVrI2IXcUVWDQDZHQcXjXFcPjYGJIL6eY2TO5J8xaWmtvOhNm3cpO1kXbBx8qcA91han8I16nA05ofae6HIuVwvI7ddnl6hS8VzbGqiBgzpf4NNqNIOiZS/WnaL2OgXDFhYl12qo4a3WG15rZNx3GwS3weK9wHVcHRD7rYavnG8iIIPrKwLLE/6frMZJuqQmkb7O9Dj9n4wPzOxsPSYcN8FKqdtv+lon2Yl3SSyWm4gXzFXynouAJu/t6cpSezcXsKQfY4UvtFbFhErR1f+KHCIVKq7u3tVQbRgcBoAu4rdndwcFDK5bLs3btXsUTDw8Pymte8JmmzY8cOmYmdO3e2jAE+nDiqDaLZxlSUbwqI6Ek1Xgy+ZIPZcXHhmKzl9Ttg5Zrg58fK3Vjn1ubgvjscYi9USB33DAI1pRGEorSmqCoMlRHQwXSNUUKAxspgptE/Ghbsx86afeH603bgWoUCsP93/EQR0bL6SxCX1Zu1x17Wb0fLoWFrVJWm40B15DAPoCgs1XbVR4LuLofbrbPbHZBOt0QZr41J/696PpQyzeAjxJFk2L/4ZxoWTEn3jb0ed0vyMw7NGpi+UiAub4D60HvW071nPJU+HSLdQbuIKjWSM6+Ax6jidl3bU67VUu6P+1Nwu7tSnlgxfRxjIWIVziVd9twYfLxS8caRJ9ZJ9cMjjaCC8Y171dP/KgxfGkR1x0OkFNw7rGud73YVY4mv4Kxru0UwOJ7YbT+cfFGM/ZHyuIRrnTBUoRQ/Vrbjxs/HGm6gU3petm3RNxpEK2F1D1fsOGXOhbpHvjJGZn3FFwg2z9FO7O5ZZ50luVxO1q9fL+94xztERGT79u3y+OOPy2c+8xkRETn//PNldHRUHn74YTnnnHNEROShhx6S0dHRxGg6EggGUUBAQEBAwFGK2VaqnpiYkGeftUHsmzdvlo0bN8rAwICsWbOmZexuX1+fvO9975O//Mu/lCVLlsjAwIB8+MMfTuRzREROPvlk+c3f/E35kz/5E/nHf/xHERH50z/9U3nLW95yxAKqRYJBpDBe65RaTTNEJvD3pIyl97oVG2NnEiPwB3CW0hW7ts5AeuyOumVPhqC814N9TzlmJjzeJIQZOds7Jmup4f5sM+NBlexusFoE00q31WxM1mTMbNFNxjR+uuC4nkHpufh6MEuOOHuRzQb5xd5VybISaYwDMacL9hpEnXaWy5pTqsYZjmOCL3mvKOKoCr1iOV+wM0mzusZ0/rJ9rbzEOtmiVDMToTLBPC4zVzYYGQ4QbZp98rAPZtkrwEiwf8xmNwHRdN1V3ctKwBiPqSE1MblX/VeZ8WTSMJoZ5QzuI8raE8tQ/4+aoYyvNvvmuYAV8tVDJUNoriVdZvU8nsey+4aSzSKbaK5TvUDVbXfqIUkkdtU8FmROo8iyr5U86o0hEy1bt8fsyjaLO7pYKBHNHHWutONNeboxrtTB4tWgWF7tsze9r9vtwiIzlPQZN52uNCX94WC4qJJN0U2XMGalfhAWyv5ilou7/uxnP5PXve51yd9GoubKK6+Ur371q23F7v7t3/6tZLNZecc73pEIM371q19VtUi//vWvy9VXX51ko1122WVe7aPZQiqKQincsbEx6evrk//3kTOlqycjIzX7IZ+K3To9GfuxvbDLxr64qtqLuGNV6AJbgQCP7TU3Vcvlqfjrsbtu3W7Ux1gC9xTT2ZlRVolHdralyi2NmY4U451QmiMeNHo9xgzB7YaqfVjuFxFtEK3O2cAQxiHd9sIbkuUXnrDGUSZ2RVVX2n0cM2jdcjnEV5VqKKlS50DXuL6q4rgnzbgChWsum49AtYR1JXyZEZPCbCsad2a9L4FFeU59RlNS/sOuY1xOtoiYE6awuwrE1tzL3vR/h+sucnsKtZ4Tp2N0wZnMPaXsjaa+orCOrDtvvJRbnNzpqlTrPMV1PdJfzuvRyk3ZdBxedxOTRGOSKtMwKFLdtCjtYiZOZ89AbqKQQ4FVGEGdkMDoZhp/fJN8bjSXGraIyK6SHb9eGukXEZHJSTu5YnwV+7es17rOj++1Y8WazkZsZ1/Wjs80iJj1qpYd4l4Vl37EDJgM5NJERW49///I6OjoQcfl+GC+Sxee/3HJZpuV/ttFtVqU+39802Ht63xBYIgCAgICAgKOUqTqM2LbDmD7gPYQDCKgL84yY90twwytQFG/EUXDQtSPwcxgJfrjjAXqCo1GnEHZ6RtZpKKDrSArRFBgkdkS7J8JDiRzQ90jzpAmeY7URor9BNtqlvFhgUdqjuxGpCyp612xhtHK3EiyjswMg7HJtEVwE3RsabSfWLHvwFGRGfpEQLli6tRZ+PhSZum4mqTcxFLLzDIRcRYubYcVIpI2+L1iJ+OSphvHw8yY5ZSD8Wk+oKeJK0Ccu+N2HpdTcu6+fjj6PLNNUo/Y87vXbUiXmeO+KFaI/edHx3UcMmae8/YxcGT90nFQco3Ff5E9nVaB1Pa9TC1CwkG1+cSYKEAWtS7u92txYbppHduyyCzZooGCfbcXLW2MU3t67NjFYy9GoHcZLvClBcsWLc41u/z9YpLQa4qaWV6CY7muAdlY72OSDwtm2WW2kBEMIiCXqkkuJdKDDCvzYtCNtoSVlfHiULGZ8vHjUcPAKmK74+CD7wBTuwcfErrgTGZYURkzLNwK2ryFrDwNvi4oBLoMHxFdLsQYUzmsq6QwmOLYyxDLRDeYcUNy0KkwUAPv76uXbEmWn33eCrIlSSIl98DEMgI+cTlTxkOX/LD9Zzo+r2kVKfbOshsE3U+tssLcoSDaFvDM9hJ7iPEu+JB6am0qwyDxMvoy2em28hlVpq3nXH3uM90pR1uHS03E74oy5+7N3PMoj3O98RxVUZyWgpp1WtIeY8sWDkVbT/wVv1u+fptscHjwpYb0dB6HmZE1uOijTuOTtG1po6lsvQoyKvHLRLphkfUX7Fip3hFcBF+JkGp8gwcK087tuhD/uAgijc9PLE2Wp+N9H99ple55UTMed3hdhTo0vxwcv2nomXGv1RgbMDcRDKKAgICAgICjFZH4J1ztbh/QFoJBBByXHZeebFp6EOw7HrMZqkwGlrdUbWHCUbBIhRQD+7LxdiwJYmc/J+SmsJ3dN+JgE2ZmAOkxnKUwkFoFZjvdbqyzBuFG0Bnc93NVOyMzrA5rp3GGRfcZGaBSPdfUhv3kdt0QzTm502aRrF5rZ4Ev5RrXPQL9T7dWJt3acW5mvJES1bGLDJ4uT8H9wAygmCFSYnzU9aQgH4vFthikvNlkrTLEPCwIXSzKjcf9xY+FL+bAG9Dd4ly8MQytBuo2juHRJk2uWarupqrYp3QV99NBOGanwcBgxEx7rrUOgm78T6+tcodhvdqO+3awRUo3EGyRYvGQfRZNwUVk1nWRVYbYKPrH7EmOJWZ5CrXTvGU+sEPWNevKNsZZMkhZT12ZKTzAZdCdm8YaYrh0rb+yy5Z+4Jg7kLUMPZn2baVGBizHPO4vi0Bvk6xR9z54hx6HqnRHQGsEgwjYVu2W7mpaloCPHsw1XloKuT5Ssq6bJ6aPTZb7sF0tDZdZ7KJiVlUtA0o5sn7wKY9v2hhhFFKkMePKJmtsx8wxI8xYcW7HNH6KJup+NPaXSVEN210gVsUvYVDsigM8lJGEY+dSNl6rHwYgM8e6ehtfhOkJ28981j1IkYZnPJFxj1UgFkdDiuNITx9T+kGnx+62CtxoKiaJKsOo2ZQpOj7OHmE+5YJp4abhN6mKGKJ8tbltW/DECnmzzAx8rj1f/I+rjc8g8hSqVaFiZr2SJoABkHOnz7vdZ5RIcLdl5l7KUW8ucnuE1TVVkgQ8d8cx657MN5/EQVTiThobKA3KTvp2sY+Me8JRqTW7mZiFRuOCBgyNpqrPjxtjeNpOMLm/F5602ab1uPjz2Eo7Lj7dYWtkDXZZodtz+qychxZvbFyoyaodS9J40XKO5doRqGkWcPgRDKKAgICAgICjFSGoetYQDCIHWIqiGPPVPZhu/WrBUrKPT9sKwj4dC0NHMzCb7qQdacsQkaqtOKbyJkBbRGQwY4OWOeMZVsHdmKnF/SMrxN+XIeib+9tds1SDySJjQDfPxVUvbWZ74277+dQae14sIYIyBwNpd6Ejw8xwNjuBqvV9ne5gT9+yga4FRTcC9F04g44ZpRR9WVTEY90zFTTbLN7nK4fRTnZUElTtYW5YN4xanE5XlIeZqXuO3cr1lfIwOr42ziBtz+/KHbAfbjyC1yxTbr6omRJYjU53PbQsZLmYWGBeNeVS8+go+c7RpenE26wS3MiYeVxp9dh1S4amxv5hf1X4BalVNF1pLj1URHIF9Yn4nk2IfUeNy7rsYYr2giGi+zrK2313vtjox/hWW0dyBAzdsyssGz60zgoHvmXw8abj0Z1XwAtIhsjUc2tV1+2QIhJ/AkK72we0hWAQARVJS0UyytWzKs6K6ErZF7IvbT/eF/fYF+v/jJ3h3G9f7Pah4fBSecDZ9oR8c8E7EZH+2N3WDXdXF15gSgHklagi3WBxhhh+Z4o7DTotEAmXk1TifVl6mfE/41S8xf54zI44BYg+fWa4sXgua6od12ML7BrD5YUJOxCqjBjUQaq7UrrEfrhY88mXicKvpsoGMklm/B3GThpZcCkWPHOlYXkEAlMuV9CM9omfzpP84nXBuQZaj1Gl3Ek+b4cjQ8znJvO6wYzqdjvGjqd/rn4qw6yd7L8kLgsuVRhMtbx7Pfdd7TBWlV2n7EqP+9Knxp2sa0OKgfXrXCKeKVVTzR4EGqoSQRyRRkk+No6myvbd5zvQh5R5nzCqK8tzsmzHq4lpO8bQGEuVYZTGXfLdz45+O350ZNx6ByZTjXFUNIh848dsIcQQzR5mUUwhICAgICAgIODoRGCIgKWZKVmUSataZZl4djBe5zrLj59XsIxId9/PkuXvjP1astwVszubplck6+gaW4oK99QnGkftoG1xhCz1gSj+SNAlRsbDuLsY3E1mhqwQXWbLM7Z/JpuNWRoUY5zCTJN6R2SIzHoySGnMYqYiOzPsT9mZ5m8utmzco4W1IiIyVrLHmJiy2zE42lf1Ox9H4XKGWkHWGrejyyxy+KXSmNKrLLSce3ZGFskE+yomgIyTZ4KacrAIPtE/L/vkYlV8GW4OFsfbph0Wx7PeXA+ve83H7rhYJG85FM99oS5TfC1VVhgy0tJujVRJqevbaE82iderjvpqvnIiKoDaeIrJ+OFUkLAlTLRUdeFMNqG6jrzpGD9yeI9Qw8+wsXwvqNs1WbFMD91rOXTKxRARLIdTw3uZXmZZn2pMENdG7fFSYGVXdNvx49UDLybLdNGXHGU8GGDNEiJmHPOJPx4WRHKQMUSHrCfzHsEgArZV+6SrmpFXF/Ym63rj4q7TUJbeUWNxV+tyWpe1L8nHlz6RLJfibdPIciD21lkXDNlYCFZZHQd+7MCL7Is3osHTK3bwMGrWNJIYk+TDbhR3Ne5EusxoVPlqBw1kkEkXu/eGE3VFkWWd1uhiDMY4jjOAGKdTO18SEZENXTaGa3zSngsHWQrKkf421y+P9CSK2fEb4YsnMsdJ7U/QiuzD5ZQ0gIHl2bVabdL/uV+PiyvjGcuT47ThdmvlPttflxlpfesya2O7ms9qSjX97jXoCNd1V4anO3VfGacwtozR4TMg+S2m4aOy4Byn6KsV5xPPdGUnKvuLsWI4NjcrTSITtKNxoAyMoOmS231GV1sN7U3WKMcjtqXRVytS78B2tnNRY6ybhrot7avuvB0L6dqv4qGdjlP6O+FjpJFUcUwwg1L1/ERwmQUEBAQEBAQseASGCBipdUu5lpH/mOhP1hm25cLObcm6pZhi05VWZzkLVLDvi5vvgHYH2Z0O5YGx61WgtJhsN+r/2H5MMXgaywya7k836GO6u1qJOIqIrM7a6tJm234wPmSQVuUsu8ZyHdy3OfcuzMjI/ugyKfY4nK32xsp0/XmUWQGtXsF0m+4zXnezVtU6Q4YKt5tEBptr9qsCsJW4DNxnvLx885LIbKwiA+PL0lK+nMYPKgDUwxCQiXAF+Pq0jlQ5iVY6SfuRheZt0wYr5GN6ErdbzcH47GPfrYKVVfy1ul84DjeoNbeN0mB/Ku7ngyU4eL/MflzijyI6cL/u0EMSQeYbu4n9VbtxLmMo+YFagtX4ecNQIhnso1j2fVpYJifuJyidsmKI8N6yhhxYJvMuZneg9iKENHcN2gzZPT122ZVRRtaIrPJ0jRppje3KHpfrYUFdvKxt29sHtIVgEAHTUU6knk2ywkSsi+hF+JRplOTg1mLxVui0yZ7YncF0+D1YZszPMTAoTs9bI2FrPFAw2bVHpYZaw2GZ2OUuurPit6oeQSCSdXrQ/270fwSxNJWI7r0GjsuOJMtpugMwZnDf4/FoPgRDivXjpuAmG0YbGncmHX9XEeJtSHHfO2mNseU99jq6apypbDhPIViXm0zE963nRw4fF37EHIOUUrJuI1WdPyQfUMoDIG6EQpDU3IyQiWQUkb0CjB4xQAVXX9tILW854NOlg7ibDAwKuouS9HSfkemZhKQdbbxZaHj3U4gtUi+B89huI03F9MCQy+A4xhDSxinT/N2dpYFlzkvHrNnF7CSP53af1TMOq4pH9nxZEBYpubgNjaCao/CsiI7jqUzak0m/FLu79jZtIiIipQ02m/cX59kH5BX9VvV+IK4UMI2LxIkFx0jj7i/VD8ZC2T+ELLPZQ3CZBQQEBAQEBCx4BIYISEukqFIRkcHsqIiIrIby2iSa7KnZ6faqrGU59mAG8ctyQ0qeLqQXS7Y+2IrcaLJ8Ss4GF+/BlKw/ThOpqIBj6O6QLUCbUTAi5XiKz5plOUxdub8hJU7ZPHMqI2KTjA6DrX06RCYI+5lpWwLlDb02CN1XNmQJ3GqmbEkXsvIilSGGkgMOd52IZYOqHleh1kxRDgYcJ2bduCEZEU82UMpFj3iED9UEz5FZNvOYCTxurawl2nRtLvOIe3SIPLJMblLI12efS8qxE19gtmZSPG0MPamO4WFmPGxcsg8yPuo6e1ghsDtps0xGIe8O3PedI49j+qpYIRdTOKN7LlFQluOC/I96PlgDjwHlSfkPpc+FZVBBGZbUwS5YCsS1D6JahCtt3D60Jv8l53mmM5YIkh2b7Jg7tdZeqAuOeb7peEzsoIBlIe1L4zyMCEHVs4ZgEAG5VFVyKf3hNYKIOxH/04eXgkZQXwqp6GhzTOxSKkfW2CFe27k5WX6x6s4iy0fNrpwyfBhMEWfxVhZ9NYYNxg4v6MZj7TNTJ40uLrqyRupdzvXMZjP7W5a1Sts+0BijoWT2ceHSTcm6p7ZZA0uJLcKwyUKczVxfnzFJMJNO0txfYz0HcmbSqP35rKYYyr2m0vLZxtk92zXUrMrAu6lSxDE+UrzPCZ9nQKWiY3WrsbcNT0Pi7nKk4u8LLrkAX41fLdK475ikiIaUr/80UJhK7+g2U/fVcdq41sm9i9w/66K1drmO56mebWxchhRADoLwGIJUn7JTeMbj/fF4PEat0/1QMCvNlaGZzdlxjllthKlfJiJSKzT2gWFYoWrnoJLfg+K0qzFhig0enxFUx6ymM/Yx+8aJw4JgEM0agsssICAgICAgYMEjMEQOLAGzMRQHP5sMLREbnCwiMgrmaAj25ZOl45JlwwBtrdoA4RPyth7aY2Ur2MiaXzm6ZuJjqhIYYG7ICo2BSamjT4b1YcAgt0uzOj0eDbI7JltsZ91qCLG0xxRcbTukr2k7nsMvp1cm6361e0uyfFx+Z7K8s2qPw0D043INLnxdYThZd8Yamwn4i5dsRWyyN5yNluN7l/ZMtyMP3VFzCDaqWmcIbE2p6Gl3vTMTCKsyhCDomPZlsLGvMbtUQ8mS3Li77paPNUnaeo5BHHApJ18Q7v5MYg9wH+1oI6n2hjnKkF1BhliZ9Aj33bxDxdY4ssZERITMki8Q3TBfYLVq1CwC+xQptsiur3Q3Hob8GPYBtsgnEEnYwGw0YNA93ddgPtOqJolZ6T5GJm/HOiWMWuC702CQy3aYkOJS27a62F74Qp+lTJctspSYydadQuIMGaCuLDN7GydZdWVFHC4EhmjWEAwi4NjsXunOZZQrqid2mTGjaycLkaqiqtbg6YI44qbKYhHRH14aPh0p+8KNIc7IlTLPjAcqQe9Eqj3354rdKcJgojFD4TKqT9NQMnFQNHy4XSVyP1KuYrBrCkjnxz52w/BhOv6j08cly6tzjW1Zd25Nl6119mTOGpnTqHHWkfXICzvgK+iq4pPiOAiltqtiKdzBNuqDZz4uNFo8Ke6+lH7nh8tnPPlCYlxtuV6ld7s2bA2fGKPLKPEKQfpqsbUhZtkK2iUZu4WY8YVlZQzsB5TLjLtgxlzKYxw5tqOxpa8Nj0NXavPF0arnngfEEfam3IMUloQ0CfvPcn7pOHNMPd50ryGzzKcUX31VI6OWqfgZvHPdBdR+zNvlzpxdnqg0xtGpKrLXGK4AN3s5DlAq12fRIApp97OGYBAFBAQEBAQcpQhp97OHYBABi9IlWZROyyPFtcm6tbldTe3IgtRgfjMAWLEtcZsiWJwp6PmQgTkuZ1mTIbiLTFba8XnrImJg82DKBmxPss6Yg8Fi9hddamSTeC7Loctk1hcw46R2DwOfGZzegajenbHrkFl3FQSNj9fs+jz6xJpviYQ++t+LyErWVfIGwrZAug2awZT6UCU/vGUhsJxqnr1r8T53W5+IoCvGs7QUZRJGSR24u2dWO4iAxjKZCB+JkHIcop3xmBu0qq8G0NWTm9o349TWsXnMtDk2jjEJphPlIlpWn/f1x+fG4x8I2DZlNZS7jvsAu6Ndn2BeYoaImWpetyHdw47kT5fgY6MxAphRD00qdOM2Dkr3FJkefV7uDjJIO9mMCX+ekjvFqh3Dy7VmUa0s/MpT1ebg7spsCjMGzBqCQQSUoqxko7TTzbQH6slMOc/jK6GKpmJUN8ZADh99bsfjqRicqo3BMcdkTM0J+R3JMkUfe9PulAtjoHQj9mg3ssIYO0W34QgMFGPoVVTave0z1++MrAuRBtZE7HKcgOtxMD+SLC+D4bMsYzPRao6vIlP+KV9QyNnry8GtkLXrS9X2H39VQJPxP3GfWKy1DqG5CD4CnTnW/DGK0h5rx/fdamGwKUVkCjCqWA/Hvnk8j5HmFStshTZid9yWGa8dDMSq2wg6UJeZM/0fx6t2MgCI95ZG68F/LOtpz77NPeCxeQnY1ndfMsYAZLS2ZAAAMRtJREFU97gYPYY2DcPEI6bi2BiHBANsEhOwgl1v3soUC8jCOMkg48wn2GiGKRo7OaT5Z1mnkIrYkObOOILqOBmq0kUeB4AxC+2wI8QQzRqCQRQQEBAQEHC0oh4dhIUvumRAwD4RDCKgGGUlE2WU22drZYmIiAyiPAWzu5ix5QsuNswQmZshsD87kX1GlqOLJULifZBpea6yLFkmO8Xg7rojhWM32Cvq6zxTWZ4s8xwZ3G1Ki/AakcniLGwUrBqvTVcskDMF1Te6/8iYMXD89IJlxDZVGpL8DLruQSZgTekQ2dkc6XEzM1SUvWfsoDCjylozNZ3IGnlYIQXXlFzdKo/7xxfk6sjYyUzAPcH6ZYwr5ww/bqMCun3HO0C0w5443W5twF1TzX08RcD56s2YRR87VXH7RlM1ppzt+2RUALNjs5kwAdn1jKdPHjpRna9h1TLum+vVplIuuOYOapcZAp+7sF4RK40/IrjRJEtmBowUMs5cbjLlceW7SNYK14PvfCpeJivk0yZLx+Nl+oDTLAOOZgSDCNhSWSqd5ayKsTGGgcrGgrFDw4AfZH7gjdE0ho87DRu6iLTbbRrt803Ho9HCtPZi1By/pAD/fh3b5R2uQhGR52EoucBj9yPeiIbN3qotrDgVq3svgnLgnpr9nXFSFHoUGbF9KjX6xGKyxIkDNvbr8R1WsDFqEeyR8szESL1nHcUl06D9VWYZYzpoHDE2w4zUPlthf+omKcFBu+wrxqpguuFI824XyeXzuK+ilOO8Z7RPMph82WTSev1sgMZMuoqYNZXdte/t6A6LPC44l4J52nG9Gr9zf2jicj/S3Zh1G0fMYMtOo4Vpzmy4jOP3GR1Uz6FR3eZXSL07nneK6uoO2Yu0Z/LCyatS1Y6XM5gJ5LHciwLSKzsaLvxSrf1s1YNGcJnNGoJBFBAQEBAQcNTiIA2iQ0HtLhAEgwgwpTvI0hhqdAQMBoN7N5cse/LKju3JckfGziCM/hBZF+oUqaw1TKHY3rBPSs/H05a1ylyByLurNgC7JzPd9LuIdnGR6VmSGW9ax2wxHm9HxbrS2L4QawGNgkvvEHu9piLLgvWCdePE21wz3pclWes+o3aIosf3wxcfKaocLgXMXE2l7sjD4qSgpaLqXSFI1JWVpoKuSQeQZXIdku4CuB84O1aLYADMYVTNNeoN+dxnjiBc32VWrJCPfWp1i9q4hcZLqrKkam1s6KlJ5kJK+2DcjRwfspTHJekNgnYFenuuo2KZ0u715uaooYGVgTxMFR9DU9qRQpUZ5nKQ4FKaVXBlxxmC9Tye0068DMjcVHJTeKfSceA1Xdr7846L2LGiv2BPYFGW3wC7vx8PHyciItVJ1MUJmDcIBhGQk7rkUzXpxZvdlWo8+C9XFyfraCxcuOiXyfKyzGSyvNuROr67bj/eNIJogOWVYGOzijQFE1UtM6pPw4igsWKUqpkCX1cK0vZ4qnYX+jocZ7m5rpGIqMGZKtIvlZfYPsXZZT3YxzgyzsawvLU2kCyvQu2zc7ueFRGR+yZOSdbRuBuetkZfR95Nb5uBrp26REp40YEUs2rycJ8gg6Wuis/ioxNfNOVBotq1zwhyjfuMfUCadBrHU8UvHULaLBCqsv99YoyHwIBRRprpUzvbHWhmWTuxUa5sN183IESYqlvrIh3HGSmDhMVaPZlZXuvIPCTKVeV2Q9JI5/MZGcFJtV8cGgKR9Zx73xK/8iwOXe1QQUZ2157CwsYwrDBxr4LtaNHBOCpzMhG/5l2dNvAp7QsE9KASW8+7i8gkzrmzyLpyjeNUc62KAB5CBJfZrCEYRAEBAQEBAUcr6pEclNsrZJm1jWAQAc+UBqWQy8mZXS8m60yWEwOtGcjL4GkXKySi3UXJfsGC9INZSnse/O4446zoKY3BWmukeHvSDFzukpmoeQoJ6RIclhowQd3MjBPhsjS1bRzHzvzWFhoBzyPozx4EXZcQFH7fnpOSZWoOvW7RUyIiMly2x6Zw4yt6bFD15mHLTi3upAtu38wQWTcyRNQtMS1y0EzhHaR+SkrRLc0uD5UhxN/JEPm0ihzBzOmiR4yRsd1kg2IiTVeZFycUywQCzsnStMqME3HKLul6Y2BVVN0wd//MvtupWeZFi/ZkfdLwe0ZKSLFxDzLTbnqtDiaCgdlR1s1QmAy2eh7bFeEi77Q3RjE6yiVmNnQeQgWFR2mwMdnm98VVBmQmqp24TvQ0mXuE57vahXeuA0wV3GopZKVVRxpjQhGMamfBsjdZR0aayMx6hPH+lBgjMoaRpWrG1mqteUwPmPsIBhHw6q7npLs7o1xVu+MYFSpW5x0GjsjMGCH7lXi+0lCZpgEwgHgXFnHlPmqOIAtS1JN4UZkyzzR5lXHmiIdi3TOCqtp06Rl3GzPq2Gcda2UHLmbEGWOqxK+xByctskVwn5q02WKj1YbxuatsXWPFTru/RSjISFfVZNme16JC+3EANIJGp6wx6/ocqNgjGDB1REKk8ebVjc+ABoInhkjFFjlTs9xp1+3UMjOPU4ZijT6byhMHk8QQ8WOr2tJV6Mky29e6/cX+ugtazKZ5rmkaDso4orszjtdR9cFwDVATi2439kNn48VZVVV3bJoyqtQNY/aW7tvM/jOl32fApmO3mooh8oh/FkbshjW41YxnkSoFWjqBExJ0f7r5oSxX7WRUbBlD5S5XxhGFFx31CKupDLZD/GP8cmQyPv/xYUBUdwca7s/2AW0hGEQBAQEBAQFHK0IM0awhGERALlWTXEq7pYxLjO4Tusl2omRGF9gWuqdMQDRFBCuRmxLnerqzdsaCgnSNkXU5JmvdeGSFOKszweBkhXo8ZT6Y1sEgcrMtS4gQLOPhchWKWMFJCk8WwKjxOuU67T6en1qaLL9camSwsc7QYHY0WX59tw12/17XyclyzSvCs2+w9hEZoPJ049pkIRzXVpaLmr3H7ZXuDnVSPPtwufyox4JJLF0OKuDVpZPTxiVSm7ncMZ79qVh9NE4rtqJ5V17Xl0fLqNUtOFDhX5+mkhIcdJAHiv1Rt4IZXR5lRgZKO1xp3C7KeEpKKCrQ0Q829RB3KkvPuLuUG9guUrOIQqBI3pLi4sYG+XH8ju3olqXbjckC1a5GR9Il25FK0V2Wg+8la74ZhqjuqXuWBp2bjR/gqqP+2WFDiCGaNQSDCJiod0q9nlHuIFPfqyzuF2AwY99mxu7kYVGY7C2feCKxGyrTzxYt92sUrAehZJ12iS6KVqcuw8AyIo2MD6JiNl2BSohSubYaoxHdZDRgiD0wFvcg1b8r3eyq2lWx5706tydZZqwSpQyM67A3Zw26lys2E5B13k5dbpdfmrDn64IScsNyBfXJqo66SowVonHEZ6LGGmeMYYjjHyJlP3p8XBzbWggoemzuGfFLjg15ejRgfMlu7F5a/y+i3Ws+sL3RxEu5VKMPBzzHsSKTnt9ZN8zz0VGusqQtG7jjddQ+cvhQO6QAIo/xJGm3Cy5TblxguuLSJTz3KFpbp4HlsKmVYemRKUhDuZ211rp2xG43FOhVRlCBGW52PXNGM7G7kKdaRoyRql9W4aSmucZZFZlsvGsFuN2MgRU56p8FzH0EgyggICAgIOBoRXCZzRqCQQSUo4xko4wKcp6MmZwMpkfjkQ3gYxZXERWUn/fUBTMgA0NGilpADLw2jBIZE7IgDMBWAcw169oyQd1klkoepopsUUe6uf90jdF9RuaImXTsn2lD5mm6Zpd3g1naW7FB2p1giPaWG+eyNG8z9LTYpZ3Z/unKHyTL/8+m306WDRvkc3FNV2yfpqbt+VYn7bKJV8x02fvGIEwyTqzeTf0ZE/QdebLMUq6o5cYG+0S12z2LzUxRMwc/GHYnal43s60KLkbzlgyRJ9BbHCwTA3azRffJplyMjsj+fQQO0L12oFXttUuSAdZtbByzQV63po8tIuJnr640kMjS4Pnw7CJxazqeHxFRbBFZLd5Tc0z+nvGwiYpFgsusvDhmbHI4HoQb66qW4L6ZNh2DDuYOD/tUpfHuVyuzaGREcpAG0SHrybxHMIiAdbldsiiXlm4KIsbvQg5PVV0gKAiO98HiryTL//7yGcnyyf0Nw+XsRS8k62j40MVFQ6QPdcGMUcLf08otx+yzgrONcW3RXdebsudClWnG/zDd3Sh3d2Hwo2HDTDpmpw2kreFijCkaWjR2KE553qJnk+V/evk3ZCayHVas0eeG5DVb3mWNTCPElsU1YortxLQ9b35n8r32vHLZxr59xSA5GrFNKts8StWhUMe6Z8rpwi+UUlV2+DA8CWmMJ6KbLsnqYdcomkfPEUNiuA/X7544E11rrflDrrrvMbB8bjxXn9tR2nZ9PFodo3kfzS7JFiX0Gm3o4nTsQ0SseKNHuLG94zT3Se3Pdy6uA9Xdz6N+Vjx9jYdOGknKZYaMtKqdW6k2yb5ybmtdiaEitisDRWxj/PiMILrSJkuNsatWDlbGfEQwiIDt1T7pqmZUVXrDtvyyvDJZR2OBGkJcf/GKp5NlEzxMA4FsBg0iGjOuSvU0pPbULZNCw4cMEZWqyUQZ0IBhYVYaJeNi95GLI0bHYQSRLeKxadCxyGxPHDnJtrx2J+SHsJ0deAYK9loX4ohhMktE2RNAs6zDGkSbdjWCtDsLrQs1Vst2f4t67PPhYpf0RNn7CU1QNwOut2JnG3D0g8rHSu2acBkunm4ow4frealNG4ae1B2/zzh2yhEP5WVmfPE66psef/SpCh152vqq3bcIRq0ztkel4NuTdxXuVcdmej1S5tW+aXPE8T8M0mZbZTx5qAGzPyV1lYfekMdQcsV0eR9vT6yVktEyhpkdPqSGuKEajSC85jSI02XTHnFPlFtDqr0Svma8kEPZOu0xjkwsYc0RR3jYEFxms4ZgEAUEBAQEBBytqNdFPAk07W8f0A6CQQSckt8lPfm0MDFkayz49bPxdcm6NKazp3e/lCyvzu1Olo/L70yWDetTbyOfWdUTw0sw6lCZpiuI7iK6uMgKmfVpT5FZskxlT601w3gM5kaSdYrVwjkqtWucVyXmvEcie05kqpj5RqHHtZ02+8wwSjyX4bKNZSoWmgUpRUSW5i1D1JFv9MlHj9ex3NHFWknNA0zkmSpzvUoQqzmehXYmcj7/jYPd8bJC3KzkaOMLWXKLlzvZHZWYpYKMPB1RrJRx6bjdf3TBKNaihetLwdeWcTWGSWmDkVLuy1b9UEKEzDb0xIfhYhqFauWG8sUNedxgSfIc2R91w7C+QvXslKuJbVuNnG2VsjjYnXrNQTN52qowRibPxc9vPee5R5H72jDjM5M1aY1oKu7ltI+2DJgXCAYRMBFlRKK09IDXf7J0jIjooGCO7yy1MYjio0MINDZGwqQjFkdEZBwlP6h3RJ2e4/ONQqk/mzo+WfcrBetaonFE7WkaSsb4oSvO59Kpe9LuTTD4nop11/G8GMxMNxiNOzOo0NVG1eqtYktt0BhbV7BGpqtvz03ZQPaKuNOF39y7MVkeWdG47pvGliXrhsZw32C0UFqGircmhqgK44MxRJF3uelUdAHOdjxmrgAZbqeMFncUdL0Ad0a5+aD8mPmKwurYl+bt+LvLePK28RhBwsK3njIj1v3X2sho5bprJ1DZL0mw77gstQ+Pm1Sl98fHV6n2bUgcRI6YI62e7d5OPMasMRJdsgKN47l37XquMwxQxu/ULCr14d3hs2JsGcbcMc0fxWnTCLbOKNXq5j7VPc+NyeJvpyD0IUNwmc0agkEUEBAQEBBwtCIYRLOGYBABA+m69KRF/mPixGTdk1OrRESkiuyjRTk7daE7pgLfQK9DAdqVvi6i3Ws+8UYTHH1m5wvJOrJJZGN8KtiGzVLsiecR6ErBTYbZ5SRcWEk/0GcuZzwB1oZ9YuB2MWXP9f/bdlayfOFym2V2Ysf2pmPzmpYgezBU6U+Wl0C+gIyTqXf2ih7r6uxAjaI9ndaNt3vMnnfKkVFGATiKOPpcN04XG2fVYEF8xV11RlG8vuqeKavDePwBxu3AIGOQlM66ZzO6ZOtk0QOjAmndx27lifAyDmAoSIJli433sgaGwBV0PXO97lSqeV0bwe7OYOZ2sr88bXiOLhZJ1STzMDZEklbfxocyQgq+DraO95Vr/YzRZVp31HTTw6LdsMKisGijSr7FJHNUJIOEPhfcStWqxmB8YkoslQ/1LJJBAUcWwSACnir3Snc5I6d3bE3WGRcRlZS7Mih2io8+jRmXijQzn+jiYiYY4XJFldPNytMiIkPV/mT5FdAnokvPGEK6kr0FDSm6zGh05OLcVf5OY8e3P8Y1GSOy5ok3Wtll1b93oniriM3068k0DM7tZRtv9PRe6zLLpu31/a2BXzj7tzzXcHGOVOz1X7vIxikdv8gaSs922LIhu6escVSOJfzrGExrTJ8nM+8JITMDsSroyi8KUvS9WdBmswrjQtDA46pyaQtFGc8HlvvwZZGZpp5QFrWLFh+aqPnb2VjvcRGlHBliUHOQWt5jBHliiJL9Ma7IU5BWey/3fWLteFv82VuubEJP4xap+SnPl95l+IiIvg6uTVkg1ie7oA4UG+CqYknr2COWpDEGezrHdXgXUdKjhrIn6pk07x1jp/BQ03iKHMbTYUco3TFrCAZRQEBAQEDAUYooqkt0EBXrD2bbhYZgEDnQAz/B6YUGW7Q1YwN9GcjL4Gi6uOhKM2wKt5sSy5i4lKwb620/MvGtUsHTYGCY4Ua2iGrRq/N7mvara5Z1Yj3Oq96s9aPZHXdBWgZKM3vOXCe61xi0PlFBwdaO0WRZ1RaLj/l/h2yQ+e5Ry9zs6rbMEvtPFexXxi64Z6ZszThiGtv152223njZ3rtqPBX2BVlSGI6z7XSmmcqPfFNzCjq24u8p+MgZtmKLPPuOXXOKIfIpVZMBcGSfKTasHRcRf0g5VnoYGNVX9K/W0ehAuupmdLwq2exHwoi46a6UoyBt807itu4krrbaOEUO95egcJy7csX5jue7Tg5WysssedCyAK8vAN/1TDJGHgxRNI2xCc+Ko/7ujGOzHlqzK61e9kTGHw5E0cGxPCGGqG0EgwjIpOqSSaVUtfuRWOVrR8W6Zmhk0H1WRLX13kxzDBHXMbuLLim6yQhjUNAIoiFFF9bLiJ95ZtJ+7NO9jRdjMDviPMakw63VOHZz6krGU2dgqubOOCOMEUkjiG27srge2N/inHXNbSv1i4hICfE6tRJckhm3S5Lik/1x4d5u3EOCsWI9WXvvhqas+7QUF4xU30Pf+MMK9mnHV5i/7yclnyQz0b1G1YOy56vv+Dqn4XZT+6M7qUXBVm/pDnbDJejo6Zq3rXLN0A9isrHsKmYzMbbIaxylXCvdVpU2OB1uLa8LDIs+l6rD2FLGabaNZ8WhKF33fNPb+Xy6XWae330uxBYfap/KOPttrhljjHzuywiFatW1TgwlbMhrE2KIFgyCQRQQEBAQEHC0IjrIGKLAELWNYBAB3amKdKdqshNulV9MrxERkWenrFYNM86WFmwGk6/+l1lPMcNaxPpf3Vjvno5k4mkPXU8Es8JO67BikWvz1pXGDCt7bJtJpbLW4G9heRLjKuP5lTGdUqKPDjeZiCTTM7JJZNoW5Swbs7tkrw2ZnHIsijNdgu5/0fZj88hAsjzaz/Il9nxNJuApXS8n6345bQO3ybrx3q5ZNJIsm+uxY9SyRgS1T3StMgTgx1pGataqgoXdLiIicrFMZHc8mkScWSc6QyRPqOni0+shDFPlCapNedx4qr3DK+R33bnP1wSXc7vMpL0ItZwd+loGOatj816gjS+K3KzyMUhtMEeuNoo98zBL3ntkjt9GRlrLAHFVp661C05vax4WdwPVf9833cS94zmOHIkCIiJpZKLV0uh4nF3JUjeRz6cW3//6dAuK9FCiXt/HzWwDIYaobQSDCKhJSmqSUinbxjUzUrYf0qzn4aQ75pSC/cgaA4tZYT7XGGOEaKyY2By6yZiqzqr1/HhTidq42xi7s7NqP+RD5f5kuRNxVEx3N+49Gjh7qtaAdMUKzYRp0wMXIt2QizL22GMpa8wMl2xfO+L0oVX91k25ecRe00LWPaJlmHq7H3L4vKbHduxNlncVGwbb7ow13CJUtacirs8HYGKHMnm7XbWKV1OJKuKjTyMiETPEoA71XlUsFnYxH+Vs/PhWIYruqybvLd6apLs5+iYzChDgj4zDDaZddHR3oSlusxK+NNeJ6gW+2mMe1edkd+pj7DFIfTW/DHjiHhXntgwllxHjMZ7aKkpr2noKs6o2Lteixwiisag8tA4DypdBpgQp6+7+mevnM5hVuj5V2WEQRSbOTCl0s092vRmyaqXw6ZyPCHc1ICAgICDgaEVwmc0agkEE7Kl1S7GWkZfK1t1iqq0vQaV1avuQcdCZV80aOz8vrkrWMQNradbq7jDAmsuGzXC5vURE8ihFTreVKyuNzI0pCTJzmaBGUG+6uVI9z5v9Iws2XrcMkGFbTNabiMhWXPOnEQjem7PZXUVQA1PVxr5XdttyKZ0n2D4xMLsDrBUz7IwuE8/7uaLVMmLdoi6wVmSLsnFds54Oe97jyCCsVjzRmYpuiVehRlqK2WJMQlSzdFfqkJtNilSZcTdfYGb1eXtJBRVa1Ew+cgS2+qAqlfuEGbE6OQ5ZKEUzuPuhkpKS7CO4STohIAqmhZloym1imBxFa3kCrH1BxA7GzFc2RGWwtZHp1XSMmcvshqsOWYtaZ03rHefoTYz0lG6psx/xubOGm3pOU81tRfRzaFhSJhBEnn4oAUj1njQzVSrPgixjR3N/Djeiel2ig3CZhbT79hEMImC41iud1azKoDotLt66C66lqZqNW9mBgqI7cnaZhoEpVsraZD1QsuZ6upwYw2KMkkk820owkUVhlZFmX3xTM40ZXTRadNYaPhgYEVxuMPaDhg/T3XlMYwxuKVkpA6br58GbT1Ts/gY77Jd6Ir4H/D0PMcapqlsaod8hIsl7peKGxCO6if2Z4zDtvsbCrW24WxLVX1fB15nwZYiZuBtP3IWKJ/K50uLLhxJzkrX2qNTcXl7dPfORa0cIkkaVK0tIxcl4vth1t3FhDB4+u3XPBzZddBs29VjIkTXc6NLxBh+5bnPdY6nUPEZVC/u1ne9jq0wvb/d9j6Hj+nldpz44Yp+UwaSUxd3xWs5z95Um431WbrDmfhBZDBNV6OZWeuK0e08x2YC5jWAQBQQEBAQEHK0ILrNZQzCIgCcmj5FCKqe0b0ZzjekB3STL4VM4sdNWnPcJLBo2yMe6MIuLIGti9j2lynlQaAYZNHj+ydKY4/vEEzmb6klbaoCMk2GitKiiOxuLkvfbi/3JciGenhUwTRur2WkYs/h4zZ4Zt5l+vbFGUEeGbjLLtHWjVPYUKA/eI+NKy7Ux3VbuS2bSxa45Zib6qt37KAAjzJhFMHa57I5KVVlOjkHSm91Dhsjn7moxbqpMHrotsJ1T28bzO26Xc8auXHRet5H7hM03QF1/fBh4y6twpfky2JJ1zPLzXS+HgCWrsSuBTrVzz7IT+2YbG8tuRswZ+J5u0Va0WypZR0Yt62Z0vDDMqCfbTTFHGfd6QwqnPUlfqoSIx3ttGEAyo0wsUC7fuv5/VlCP/JHu7SAYRG0jGETAULFPcpm8+gh3xl+BlZ22AOsgBBgHMjbtnq42Zohl4mywiuvNEpE9+Jjq+CQUjk013yq6wzLKKLFfl7wq+pqN29r9FjwFZ12yASIi41FH0zqC166MEfSYgs3MMgYK3WiLU9YoHMtYN9hw0V6boXHrthzLN9os7bTbVTGSn73YxifVPVy+MYSG4A5Nq2vjzlRz7Y9CkJUsssXSTLXHBg5/BQtKRhV8pD0fShVnFDkacDMoZteZns5H0hTb9HxcfCnzulFzN3zxHz4jJ3FR4ZFXOqeOFH0RbfzYDDFmFXqMJ4/riFlO7gaefjgeN29qPA1LtvelhRlDj8KSre7FzNXNSVX+47WIISLoWlQq2CpOyrE/j6uQUM8kr1m87DVQGIqHeDj1TLYywJkNaVL3i74LFjCXEQyigICAgICAoxVRJLIfEiHu7QPaQTCIgEKmIvlMSnogDLi2c1fj/7xliOhCIiMyAqaHDIsJXCYjUgEHzADrMoOLHRV3yGAwALiGqVAH+tcB15dx+4xB88dVhV5EBxHT5WTcYwyudgVMi2gWiWU6zPmyLXWIyMzQ/VSt2eNMxe6WYt4+wqNF63bLDIBda8HfrwHjtwjpJTkPQ0SXWW/8rAyn7b1XyUdpH73DNk2rdIZYHowOXTa+2gYOpCAQGZEdqTVfG+Xa5TjsE2Z06cJ4XHdqps8g6GbdTu2i85VS8F2OeLnuGeFSnowu58ejDQZDaxk52vsCmOkKUtfRnW2VVIj3MHDt6AmZTvnrlLm30omRUdPxeG/ruFBsU/fdR/M7GUvqE3kCom1bvCOea5OdRj8YKB8fJ6I+l+c5Nfk0NXey72FBVI/UO7vf2weDqG3MG4Po9ttvl89+9rOyfft2OfXUU+W2226T1772tfu1jxO7d0jHopxKgz8uNoS6kK5NY+D5sk3TpnExkIUrLTZiKJ6o0tZpBHmUqM1HPe1xjRGqThqNnLgf2pByZ0QxZqY/ZVMuzDGLkTWS6B5chmvHDDYaVeY60bBYkbNxWTvEZutl8UXOwi3Vla80/Z7B8tMTNnWf2WmMFzLXpoLrNYSswSU5647rcdSmExE5vWebiIhsnehP1kUeXwRVq7OFZr+UCvnpxvMxha+ER6k6UewdhQIzb22PfVYo6FjvYJHZuCAqd0tRyDYmqeZD4hAmFxH7QRGZGcdjl3Pxq8OPlhLj42PfyliJ+BGE+8zngqFgZtqxQ8baeIy+ustF5HM9FTyuL1fqPvvtS6+nQeQrCBp3wJvx18I1xjYuhfGZffJlGRooYxjrC2NuI6da2LfRp+4L7m224r4eyTl4tlNJgXHmYQ3xb4cdUV0OjiEKafftYhbVFA4fvvnNb8q1114rN9xwgzz66KPy2te+Vi699FLZsmXLke5aQEBAQEBAwBzAvGCIPv/5z8v73vc++eM//mMREbntttvkv//7v+VLX/qS3HLLLW3v51cKO6SrI+Ou+VW3LMizpcFk+YuP/UayPDhgmYjXrdiULA9kG0wDGR1miBU8Iocu5ojMDYOjy5jiFQUuLkxXTcYZGR26k1SgNCYVk9IsQMNjk9ViVhuh9h0vMzi5iOvBtr2oOL8dM7X+joYrUAWhgyGiJlEJVMNQ1TJA+awN9DY4v+fZZPmZoq1rlvZEbZq+Lum0LNrwuNt9RoaIoo8myyzF6S4uYx0lJyLSD8pt1bg42TEETzNrphdNOVHOsB/x72ALah1gVcpu94jqhytA1RdU61lvtqU4Hs+Fo5Z6ZOnSS6nuNI5Xd9NJqo0no8/VT19QcsvMPVcA+Qx4swVdekLegG2PG6/VMTxt9M6bf9dZYW4mTe0iPqYK1sc+yj1IGmHuh+NVJDOW8TBB3jp6SeaYezuljZTR/88Ggsts9jDnDaJyuSwbNmyQ66+/Xq2/5JJL5MEHH3RuUyqVpFSyo+3YWMOQ6UlPS3c6o7KjRuqNGlXPFq0Lhh/YM4/dliyv6hxJlo+FCrMRA6SBQ4OCH1stZmiPYwwhpsPT9VVGLAj3MQXjyLiwptTXxcKXOUaDx1wbCjD65AZ8tcwMJhA3RMOG15fXZlHB3jOT7s7taGQw7X6yag26HbFIpojIcbnGPdpa7U/WMYNwS3qps98ZHNMYuecvfi5Zx7inX7xk1ckpQ5DJ7JvGzuL3Ej/M/MhV+TUyB7GrVAwO2ipvDNP408Ywo9sFnfJ89NX3Lprxv+wjS44fJezElNTL7/W0baNwrGmuuk9DJOW2BnTavaP/0vy7yD7cRTM7NBPtxCe1MKC8Boevf+Z3j4JAy2K3MiNmKgYVv8Xj7tw/aQELn+FonnFvhhigbhGMnyQh0eN6rHbY5ak4QmI2Y4iCy2z2MOcNol27dkmtVpMVK1ao9StWrJChoSHnNrfccot88pOfbFo/NdF4qxhTMlVvrCuW7NeljJepMmmdyaWabTNdR+p7PJ1m4LPPICrh2Jzo1OM3PoOpOQMXeTy1HYaBYhzRWHTNfEUkjWjFSClfk4ky+0o72xKlFiMrr1eKBhEUmytFe32rk3YUqkSN9TSIKjX2E/cLxsA0ir5OVBvtp6ooxYGAkuK03UeEa0ODqBqfu7pveCbqU4g9gpGTzrU/SNWhFi1Us3YYRLVitmldYx+41tyMStWGAUKKviL2qh5DiTPvFjEuXoPIwXLwo9NO/Lgr0FuxAp7lqOo2iJJ9HGGDSDVvETPja9vKIGpnf6qNS6MJ17HmKQviMojUo+R6lmQffXUZRFV3Y1awrzvYIF/sVA0MkXkm66XGez0b7EtVKvtlPDq3D2gLc94gMkjNoJKjKGpaZ/Cxj31MrrvuuuTvbdu2ySmnnCKX//pzzvYB8wd3O9du97Te5FnfCv97gNsFBATMJYyPj0tfX1/rhgeAfD4vg4OD8sDQ9w56X4ODg5LPuz0DARZz3iBaunSpZDKZJjZoeHi4iTUyKBQKUihYN8qiRYvkySeflFNOOUW2bt0qvb29zu3mOsbGxmT16tXhHOcw5vv5iYRznA+Y7+cXRZGMj4/LqlWrWjc+QHR0dMjmzZulXD74lLZ8Pi8dHR2tGy5wzHmDKJ/Py1lnnSXr16+X3/md30nWr1+/Xn77t3+7rX2k02k55phjRESkt7d3Xr7ARDjHuY/5fn4i4RznA+bz+R0uZojo6OgIhswsYs4bRCIi1113nVx++eVy9tlny/nnny933HGHbNmyRa666qoj3bWAgICAgICAOYB5YRC9853vlN27d8unPvUp2b59u5x22mnyve99T9auXXukuxYQEBAQEBAwBzAvDCIRkfe///3y/ve//4C3LxQK8olPfELFFs03hHOc+5jv5ycSznE+YL6fX8D8RCoKqk0BAQEBAQEBCxzzonRHQEBAQEBAQMDBIBhEAQEBAQEBAQsewSAKCAgICAgIWPAIBlFAQEBAQEDAgkcwiGLcfvvtsm7dOuno6JCzzjpLfvSjHx3pLh0QbrnlFnn1q18tPT09snz5cnnb294mTz/9tGoTRZHceOONsmrVKuns7JSLLrpInnjiiSPU44PHLbfcIqlUSq699tpk3Xw4x23btsl73/teWbJkiXR1dcmv/uqvyoYNG5Lf5/I5VqtV+fjHPy7r1q2Tzs5OOf744+VTn/qU1FHMaq6d3w9/+EN561vfKqtWrZJUKiX//u//rn5v53xKpZJ88IMflKVLl0p3d7dcdtll8tJLL83iWewb+zrHSqUiH/3oR+X000+X7u5uWbVqlVxxxRXy8ssvq30c7ecYsIARBUR33313lMvlojvvvDN68skno2uuuSbq7u6OXnzxxSPdtf3Gm970pugrX/lK9Pjjj0cbN26M3vzmN0dr1qyJJiYmkja33npr1NPTE33rW9+KHnvsseid73xntHLlymhsbOwI9vzA8PDDD0fHHXdc9KpXvSq65pprkvVz/Rz37NkTrV27NvqDP/iD6KGHHoo2b94c3XvvvdGzzz6btJnL53jTTTdFS5Ysif7zP/8z2rx5c/Rv//Zv0aJFi6LbbrstaTPXzu973/tedMMNN0Tf+ta3IhGJvvOd76jf2zmfq666KjrmmGOi9evXR4888kj0ute9LjrjjDOiarU6y2fjxr7OcWRkJLr44oujb37zm9Evf/nL6Mc//nF07rnnRmeddZbax9F+jgELF8EgiqLonHPOia666iq17qSTToquv/76I9SjQ4fh4eFIRKL7778/iqIoqtfr0eDgYHTrrbcmbYrFYtTX1xf9wz/8w5Hq5gFhfHw8OuGEE6L169dHF154YWIQzYdz/OhHPxpdcMEF3t/n+jm++c1vjv7oj/5IrXv7298evfe9742iaO6f30xjoZ3zGRkZiXK5XHT33XcnbbZt2xal0+nonnvumbW+twuX0TcTDz/8cCQiyeRyrp1jwMLCgneZlctl2bBhg1xyySVq/SWXXCIPPvjgEerVocPo6KiIiAwMDIiIyObNm2VoaEidb6FQkAsvvHDOne9f/MVfyJvf/Ga5+OKL1fr5cI7f/e535eyzz5bf+73fk+XLl8uZZ54pd955Z/L7XD/HCy64QP7nf/5HnnnmGRER+fnPfy4PPPCA/NZv/ZaIzP3zm4l2zmfDhg1SqVRUm1WrVslpp502J89ZpDH+pFIp6e/vF5H5eY4B8wfzRqn6QLFr1y6p1WqyYsUKtX7FihUyNDR0hHp1aBBFkVx33XVywQUXyGmnnSYikpyT63xffPHFWe/jgeLuu++WRx55RH760582/TYfzvH555+XL33pS3LdddfJX//1X8vDDz8sV199tRQKBbniiivm/Dl+9KMfldHRUTnppJMkk8lIrVaTT3/60/Lud79bRObHPSTaOZ+hoSHJ5/OyePHipjZzcSwqFoty/fXXy3ve856kwOt8O8eA+YUFbxAZpFIp9XcURU3r5ho+8IEPyC9+8Qt54IEHmn6by+e7detWueaaa+T73//+PitBz+VzrNfrcvbZZ8vNN98sIiJnnnmmPPHEE/KlL31JrrjiiqTdXD3Hb37zm3LXXXfJN77xDTn11FNl48aNcu2118qqVavkyiuvTNrN1fPz4UDOZy6ec6VSkXe9611Sr9fl9ttvb9l+Lp5jwPzDgneZLV26VDKZTNPsZHh4uGk2N5fwwQ9+UL773e/KfffdJ8cee2yyfnBwUERkTp/vhg0bZHh4WM466yzJZrOSzWbl/vvvl7/7u7+TbDabnMdcPseVK1fKKaecotadfPLJsmXLFhGZ+/fxr/7qr+T666+Xd73rXXL66afL5ZdfLh/60IfklltuEZG5f34z0c75DA4OSrlclr1793rbzAVUKhV5xzveIZs3b5b169cn7JDI/DnHgPmJBW8Q5fN5Oeuss2T9+vVq/fr16+U1r3nNEerVgSOKIvnABz4g3/72t+V///d/Zd26der3devWyeDgoDrfcrks999//5w53ze84Q3y2GOPycaNG5N/Z599tvz+7/++bNy4UY4//vg5f46//uu/3iSX8Mwzz8jatWtFZO7fx6mpKUmn9fCTyWSStPu5fn4z0c75nHXWWZLL5VSb7du3y+OPPz5nztkYQ5s2bZJ7771XlixZon6fD+cYMI9xpKK5jyaYtPsvf/nL0ZNPPhlde+21UXd3d/TCCy8c6a7tN/78z/886uvri37wgx9E27dvT/5NTU0lbW699daor68v+va3vx099thj0bvf/e6jOp25HTDLLIrm/jk+/PDDUTabjT796U9HmzZtir7+9a9HXV1d0V133ZW0mcvneOWVV0bHHHNMknb/7W9/O1q6dGn0kY98JGkz185vfHw8evTRR6NHH300EpHo85//fPToo48mGVbtnM9VV10VHXvssdG9994bPfLII9HrX//6oyolfV/nWKlUossuuyw69thjo40bN6rxp1QqJfs42s8xYOEiGEQxvvjFL0Zr166N8vl89Gu/9mtJmvpcg4g4/33lK19J2tTr9egTn/hENDg4GBUKheg3fuM3oscee+zIdfoQYKZBNB/O8T/+4z+i0047LSoUCtFJJ50U3XHHHer3uXyOY2Nj0TXXXBOtWbMm6ujoiI4//vjohhtuUB/OuXZ+9913n/Pdu/LKK6Moau98pqenow984APRwMBA1NnZGb3lLW+JtmzZcgTOxo19nePmzZu94899992X7ONoP8eAhYtUFEXR7PFRAQEBAQEBAQFHHxZ8DFFAQEBAQEBAQDCIAgICAgICAhY8gkEUEBAQEBAQsOARDKKAgICAgICABY9gEAUEBAQEBAQseASDKCAgICAgIGDBIxhEAQEBAQEBAQsewSAKCAgICAgIWPAIBlFAQEBAQEDAgkcwiAICAgICAgIWPIJBFBCwwHHRRRfJ1VdfLR/5yEdkYGBABgcH5cYbbxQRkR/84AeSz+flRz/6UdL+c5/7nCxdulS2b99+hHocEBAQcOgRDKKAgAD52te+Jt3d3fLQQw/JZz7zGfnUpz4l69evl4suukiuvfZaufzyy2V0dFR+/vOfyw033CB33nmnrFy58kh3OyAgIOCQIRR3DQhY4LjoooukVqspFuicc86R17/+9XLrrbdKuVyW8847T0444QR54okn5Pzzz5c777zzCPY4ICAg4NAje6Q7EBAQcOTxqle9Sv29cuVKGR4eFhGRfD4vd911l7zqVa+StWvXym233XYEehgQEBBweBFcZgEBAZLL5dTfqVRK6vV68veDDz4oIiJ79uyRPXv2zGrfAgICAmYDwSAKCAjYJ5577jn50Ic+JHfeeaecd955csUVVyhjKSAgIGA+IBhEAQEBXtRqNbn88svlkksukT/8wz+Ur3zlK/L444/L5z73uSPdtYCAgIBDimAQBQQEePHpT39aXnjhBbnjjjtERGRwcFD+6Z/+ST7+8Y/Lxo0bj2znAgICAg4hQpZZQEBAQEBAwIJHYIgCAgICAgICFjyCQRQQEBAQEBCw4BEMooCAgICAgIAFj2AQBQQEBAQEBCx4BIMoICAgICAgYMEjGEQBAQEBAQEBCx7BIAoICAgICAhY8AgGUUBAQEBAQMCCRzCIAgICAgICAhY8gkEUEBAQEBAQsOARDKKAgICAgICABY9gEAUEBAQEBAQsePz/LOUhC/oBD7oAAAAASUVORK5CYII=", - "text/plain": [ - "
" - ] - }, - "metadata": {}, - "output_type": "display_data" - } - ], + "outputs": [], "source": [ "expt.bathymetry.depth.plot()" ] @@ -324,7 +303,8 @@ "metadata": {}, "outputs": [], "source": [ - "expt.init_tracers.salt.isel(zl = 0).plot()" + "# Depends on Matplotlib\n", + "# expt.init_tracers.salt.isel(zl = 0).plot()" ] }, { @@ -340,7 +320,8 @@ "metadata": {}, "outputs": [], "source": [ - "expt.segment_001.u_segment_001.isel(time = 5).plot()" + "# Depends on Matplotlib\n", + "#expt.segment_001.u_segment_001.isel(time = 5).plot()" ] }, { @@ -448,7 +429,7 @@ ], "metadata": { "kernelspec": { - "display_name": "Python 3 (ipykernel)", + "display_name": "vroom_clean_env", "language": "python", "name": "python3" }, @@ -462,7 +443,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.13" + "version": "3.12.6" } }, "nbformat": 4, diff --git a/regional_mom6/regional_mom6.py b/regional_mom6/regional_mom6.py index d69e58ec..9b8735e6 100644 --- a/regional_mom6/regional_mom6.py +++ b/regional_mom6/regional_mom6.py @@ -30,7 +30,7 @@ "generate_rectangular_hgrid", "experiment", "segment", - "load_experiment", + "create_experiment_from_config", ] @@ -104,7 +104,25 @@ def find_MOM6_rectangular_orientation(input): ## Load Experiment Function -def load_experiment(config_file_path): +def create_experiment_from_config( + config_file_path, + mom_input_folder=None, + mom_run_folder=None, + create_hgrid_and_vgrid=True, +): + """ + Load an experiment variables from a config file and generate hgrid/vgrid. + Computer specific functionality eliminates the ability to pass file paths. + Basically another way to initialize. Sets a default folder of "mom_input/from_config" and "mom_run/from_config" unless specified + + Args: + config_file_path (str): Path to the config file. + mom_input_folder (str): Path to the MOM6 input folder. Default is "mom_input/from_config". + mom_run_folder (str): Path to the MOM6 run folder. Default is "mom_run/from_config". + create_hgrid_and_vgrid (bool): Whether to create the hgrid and vgrid. Default is True. + Returns: + experiment: An experiment object with the fields from the config loaded in. + """ print("Reading from config file....") with open(config_file_path, "r") as f: config_dict = json.load(f) @@ -113,7 +131,7 @@ def load_experiment(config_file_path): expt = experiment.create_empty() print("Setting Default Variables.....") - expt.expt_name = config_dict["name"] + expt.expt_name = config_dict["expt_name"] try: expt.longitude_extent = tuple(config_dict["longitude_extent"]) expt.latitude_extent = tuple(config_dict["latitude_extent"]) @@ -122,13 +140,24 @@ def load_experiment(config_file_path): expt.latitude_extent = None try: expt.date_range = config_dict["date_range"] - expt.date_range[0] = dt.datetime.strptime(expt.date_range[0], "%Y-%m-%d") - expt.date_range[1] = dt.datetime.strptime(expt.date_range[1], "%Y-%m-%d") + expt.date_range[0] = dt.datetime.strptime( + expt.date_range[0], "%Y-%m-%d %H:%M:%S" + ) + expt.date_range[1] = dt.datetime.strptime( + expt.date_range[1], "%Y-%m-%d %H:%M:%S" + ) except: expt.date_range = None - expt.mom_run_dir = Path(config_dict["run_dir"]) - expt.mom_input_dir = Path(config_dict["input_dir"]) - expt.toolpath_dir = Path(config_dict["toolpath_dir"]) + + if mom_input_folder is None: + mom_input_folder = Path(os.path.join("mom_run", "from_config")) + if mom_run_folder is None: + mom_run_folder = Path(os.path.join("mom_input", "from_config")) + expt.mom_run_dir = Path(mom_run_folder) + expt.mom_input_dir = Path(mom_input_folder) + os.makedirs(expt.mom_run_dir, exist_ok=True) + os.makedirs(expt.mom_input_dir, exist_ok=True) + expt.resolution = config_dict["resolution"] expt.number_vertical_layers = config_dict["number_vertical_layers"] expt.layer_thickness_ratio = config_dict["layer_thickness_ratio"] @@ -140,66 +169,14 @@ def load_experiment(config_file_path): expt.minimum_depth = config_dict["minimum_depth"] expt.tidal_constituents = config_dict["tidal_constituents"] - print("Checking for hgrid and vgrid....") - if os.path.exists(config_dict["hgrid"]): - print("Found") - expt.hgrid = xr.open_dataset(config_dict["hgrid"]) - else: - print("Hgrid not found, call _make_hgrid when you're ready.") - expt.hgrid = None - if os.path.exists(config_dict["vgrid"]): - print("Found") - expt.vgrid = xr.open_dataset(config_dict["vgrid"]) - else: - print("Vgrid not found, call _make_vgrid when ready") - expt.vgrid = None - - print("Checking for bathymetry...") - if config_dict["bathymetry"] is not None and os.path.exists( - config_dict["bathymetry"] - ): - print("Found") - expt.bathymetry = xr.open_dataset(config_dict["bathymetry"]) + if create_hgrid_and_vgrid: + print("Creating hgrid and vgrid....") + expt.hgrid = expt._make_hgrid() + expt.vgrid = expt._make_vgrid() else: - print( - "Bathymetry not found. Please provide bathymetry, or call setup_bathymetry method to set up bathymetry." - ) - - print("Checking for ocean state files....") - found = True - for path in config_dict["ocean_state"]: - if not os.path.exists(path): - found = False - print( - "At least one ocean state file not found. Please provide ocean state files, or call setup_ocean_state_boundaries method to set up ocean state." - ) - break - if found: - print("Found") - found = True - print("Checking for initial condition files....") - for path in config_dict["initial_conditions"]: - if not os.path.exists(path): - found = False - print( - "At least one initial condition file not found. Please provide initial condition files, or call setup_initial_condition method to set up initial condition." - ) - break - if found: - print("Found") - found = True - print("Checking for tides files....") - for path in config_dict["tides"]: - if not os.path.exists(path): - found = False - print( - "At least one tides file not found. If you would like tides, call setup_tides_boundaries method to set up tides" - ) - break - if found: - print("Found") - found = True + print("Skipping hgrid and vgrid creation....") + print("Done!") return expt @@ -640,7 +617,7 @@ def create_empty( repeat_year_forcing=False, minimum_depth=4, tidal_constituents=["M2"], - name=None, + expt_name=None, ): """ Substitute init method to creates an empty expirement object, with the opportunity to override whatever values wanted. @@ -661,10 +638,10 @@ def create_empty( hgrid_type=None, repeat_year_forcing=None, tidal_constituents=None, - name=None, + expt_name=None, ) - expt.expt_name = name + expt.expt_name = expt_name expt.tidal_constituents = tidal_constituents expt.repeat_year_forcing = repeat_year_forcing expt.hgrid_type = hgrid_type @@ -703,7 +680,7 @@ def __init__( minimum_depth=4, tidal_constituents=["M2"], create_empty=False, - name=None, + expt_name=None, ): # Creates empty experiment object for testing and experienced user manipulation. @@ -715,7 +692,7 @@ def __init__( # ## Set up the experiment with no config file ## in case list was given, convert to tuples - self.expt_name = name + self.expt_name = expt_name self.date_range = tuple(date_range) self.mom_run_dir = Path(mom_run_dir) @@ -838,7 +815,7 @@ def __getattr__(self, name): elif "segment" in name: try: - xr.open_mfdataset( + return xr.open_mfdataset( str(self.mom_input_dir / f"*{name}*.nc"), decode_times=False, decode_cf=False, @@ -1077,34 +1054,30 @@ def bathymetry_property(self): def write_config_file(self, path=None, export=True, quiet=False): """ Write a configuration file for the experiment. This is a simple json file - that contains the expirment object information to allow for reproducibility, to pick up where a user left off, and - to make information about the expirement readable. + that contains the expirment varuavke information to allow for easy pass off to other users, with a strict computer independence restriction. + It also makes information about the expirement readable, and is good for just printing out information about the experiment. + + Args: + path (Optional[str]): Path to write the config file to. If not provided, the file is written to the ``mom_run_dir`` directory. + export (Optional[bool]): If ``True`` (default), the configuration file is written to disk on the given path + quiet (Optional[bool]): If ``True``, no print statements are made. + Returns: + Dict: A dictionary containing the configuration information. """ if not quiet: print("Writing Config File.....") - ## check if files exist - vgrid_path = None - hgrid_path = None - if os.path.exists(self.mom_input_dir / "vcoord.nc"): - vgrid_path = self.mom_input_dir / "vcoord.nc" - if os.path.exists(self.mom_input_dir / "hgrid.nc"): - hgrid_path = self.mom_input_dir / "hgrid.nc" - try: date_range = [ - self.date_range[0].strftime("%Y-%m-%d"), - self.date_range[1].strftime("%Y-%m-%d"), + self.date_range[0].strftime("%Y-%m-%d %H:%M:%S"), + self.date_range[1].strftime("%Y-%m-%d %H:%M:%S"), ] except: date_range = None config_dict = { - "name": self.expt_name, + "expt_name": self.expt_name, "date_range": date_range, "latitude_extent": self.latitude_extent, "longitude_extent": self.longitude_extent, - "run_dir": str(self.mom_run_dir), - "input_dir": str(self.mom_input_dir), - "toolpath_dir": str(self.toolpath_dir), "resolution": self.resolution, "number_vertical_layers": self.number_vertical_layers, "layer_thickness_ratio": self.layer_thickness_ratio, @@ -1114,11 +1087,6 @@ def write_config_file(self, path=None, export=True, quiet=False): "ocean_mask": self.ocean_mask, "layout": self.layout, "minimum_depth": self.minimum_depth, - "vgrid": str(vgrid_path), - "hgrid": str(hgrid_path), - "ocean_state": self.ocean_state_boundaries, - "tides": self.tides_boundaries, - "initial_conditions": self.initial_condition, "tidal_constituents": self.tidal_constituents, } if export: @@ -2656,10 +2624,19 @@ def write_MOM_file(self, MOM_file_dict): str(original_MOM_file_dict[var]["value"]), str(MOM_file_dict[var]["value"]), ) - lines[jj] = lines[jj].replace( - original_MOM_file_dict[var]["comment"], - str(MOM_file_dict[var]["comment"]), - ) + if original_MOM_file_dict[var]["comment"] != None: + lines[jj] = lines[jj].replace( + original_MOM_file_dict[var]["comment"], + str(MOM_file_dict[var]["comment"]), + ) + else: + lines[jj] = ( + lines[jj].replace("\n", "") + + " !" + + str(MOM_file_dict[var]["comment"]) + + "\n" + ) + print( "Changed", var, diff --git a/tests/test_config.py b/tests/test_config.py new file mode 100644 index 00000000..6c2f35c9 --- /dev/null +++ b/tests/test_config.py @@ -0,0 +1,130 @@ +import pytest +import regional_mom6 as rmom6 +from pathlib import Path +import os +import json +import shutil + + +def test_write_config(): + expt_name = "testing" + + latitude_extent = [16.0, 27] + longitude_extent = [192, 209] + + date_range = ["2005-01-01 00:00:00", "2005-02-01 00:00:00"] + + ## Place where all your input files go + input_dir = Path( + os.path.join( + expt_name, + "inputs", + ) + ) + + ## Directory where you'll run the experiment from + run_dir = Path( + os.path.join( + expt_name, + "run_files", + ) + ) + data_path = Path("data") + for path in (run_dir, input_dir, data_path): + os.makedirs(str(path), exist_ok=True) + + ## User-1st, test if we can even read the angled nc files. + expt = rmom6.experiment( + longitude_extent=longitude_extent, + latitude_extent=latitude_extent, + date_range=date_range, + resolution=0.05, + number_vertical_layers=75, + layer_thickness_ratio=10, + depth=4500, + minimum_depth=25, + mom_run_dir=run_dir, + mom_input_dir=input_dir, + toolpath_dir="", + expt_name="test", + ) + config_dict = expt.write_config_file() + assert config_dict["longitude_extent"] == tuple(longitude_extent) + assert config_dict["latitude_extent"] == tuple(latitude_extent) + assert config_dict["date_range"] == date_range + assert config_dict["resolution"] == 0.05 + assert config_dict["number_vertical_layers"] == 75 + assert config_dict["layer_thickness_ratio"] == 10 + assert config_dict["depth"] == 4500 + assert config_dict["minimum_depth"] == 25 + assert config_dict["expt_name"] == "test" + assert config_dict["hgrid_type"] == "even_spacing" + assert config_dict["repeat_year_forcing"] == False + assert config_dict["tidal_constituents"] == ["M2"] + assert config_dict["expt_name"] == "test" + shutil.rmtree(run_dir) + shutil.rmtree(input_dir) + shutil.rmtree(data_path) + + +def test_load_config(): + + expt_name = "testing" + + latitude_extent = [16.0, 27] + longitude_extent = [192, 209] + + date_range = ["2005-01-01 00:00:00", "2005-02-01 00:00:00"] + + ## Place where all your input files go + input_dir = Path( + os.path.join( + expt_name, + "inputs", + ) + ) + + ## Directory where you'll run the experiment from + run_dir = Path( + os.path.join( + expt_name, + "run_files", + ) + ) + data_path = Path("data") + for path in (run_dir, input_dir, data_path): + os.makedirs(str(path), exist_ok=True) + + ## User-1st, test if we can even read the angled nc files. + expt = rmom6.experiment( + longitude_extent=longitude_extent, + latitude_extent=latitude_extent, + date_range=date_range, + resolution=0.05, + number_vertical_layers=75, + layer_thickness_ratio=10, + depth=4500, + minimum_depth=25, + mom_run_dir=run_dir, + mom_input_dir=input_dir, + toolpath_dir="", + ) + path = "testing_config.json" + config_expt = expt.write_config_file(path) + new_expt = rmom6.create_experiment_from_config(os.path.join(path)) + assert str(new_expt) == str(expt) + print(new_expt.vgrid) + print(expt.vgrid) + assert new_expt.hgrid == expt.hgrid + assert (new_expt.vgrid.zi == expt.vgrid.zi).all() & ( + new_expt.vgrid.zl == expt.vgrid.zl + ).all() + assert os.path.exists(new_expt.mom_run_dir) & os.path.exists(new_expt.mom_input_dir) + assert os.path.exists(new_expt.mom_input_dir / "hgrid.nc") & os.path.exists( + new_expt.mom_input_dir / "vcoord.nc" + ) + shutil.rmtree(run_dir) + shutil.rmtree(input_dir) + shutil.rmtree(data_path) + shutil.rmtree(new_expt.mom_run_dir) + shutil.rmtree(new_expt.mom_input_dir) diff --git a/tests/test_manish_branch.py b/tests/test_manish_branch.py index 0c293e61..63cc6de9 100644 --- a/tests/test_manish_branch.py +++ b/tests/test_manish_branch.py @@ -162,7 +162,7 @@ def setup_class(self): # tmp_path is a pytest fixture self.dump_files_dir = Path("testing_outputs") os.makedirs(self.dump_files_dir, exist_ok=True) self.expt = rmom6.experiment.create_empty( - name=expt_name, + expt_name=expt_name, mom_input_dir=self.dump_files_dir, mom_run_dir=self.dump_files_dir, ) @@ -255,17 +255,6 @@ def test_tides(self, dummy_tidal_data): self.expt.setup_boundary_tides(self.dump_files_dir, "fake_tidal_data.nc") - def test_read_write_config(self): - """ - Test the read and write config functions - """ - # Write the config - self.expt.write_config_file(path=self.dump_files_dir / "config.yaml") - # Read the config - expt = rmom6.load_experiment(self.dump_files_dir / "config.yaml") - # Check if the config is the same - assert str(self.expt) == str(expt) - def test_change_MOM_parameter(self): """ Test the change MOM parameter function, as well as read_MOM_file and write_MOM_file under the hood. @@ -282,11 +271,12 @@ def test_change_MOM_parameter(self): shutil.copytree( base_run_dir / "common_files", self.expt.mom_run_dir, dirs_exist_ok=True ) - og = self.expt.change_MOM_parameter("MINIMUM_DEPTH", "adasd", "COOL COMMENT") MOM_override_dict = self.expt.read_MOM_file_as_dict("MOM_override") - assert MOM_override_dict["MINIMUM_DEPTH"]["value"] == "adasd" - assert MOM_override_dict["original"]["OBC_SEGMENT_001"]["value"] == og - assert MOM_override_dict["MINIMUM_DEPTH"]["comment"] == "COOL COMMENT\n" + og = self.expt.change_MOM_parameter("DT", "30", "COOL COMMENT") + MOM_override_dict_new = self.expt.read_MOM_file_as_dict("MOM_override") + assert MOM_override_dict_new["DT"]["value"] == "30" + assert MOM_override_dict["DT"]["value"] == og + assert MOM_override_dict_new["DT"]["comment"] == "COOL COMMENT\n" def test_properties_empty(self): """