-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathutils.py
63 lines (52 loc) · 1.68 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
# Utilities for CoMix
import os
import random
import torch
import torch.backends.cudnn as cudnn
import torch.nn.functional as F
from torch.autograd import Variable
from models import *
import torchvision
import params
def print_line():
print('-'*100)
def make_variable(tensor, gpu_id=0, volatile=False):
if torch.cuda.is_available():
tensor = tensor.cuda()
return Variable(tensor, volatile=volatile)
def make_cuda(tensor, gpu_id):
if torch.cuda.is_available():
tensor = tensor.cuda()
return tensor
def denormalize(x, std, mean):
"""Invert normalization, and then convert array into image."""
out = x * std + mean
return out.clamp(0, 1)
def init_weights(layer):
"""Init weights for layers w.r.t. the original paper."""
layer_name = layer.__class__.__name__
if layer_name.find("Conv") != -1:
layer.weight.data.normal_(0.0, 0.02)
elif layer_name.find("BatchNorm") != -1:
layer.weight.data.normal_(1.0, 0.02)
layer.bias.data.fill_(0)
def init_random_seed(manual_seed):
"""Init random seed."""
seed = None
if manual_seed is None:
seed = random.randint(1, 10000)
else:
seed = manual_seed
print("use random seed: {}".format(seed))
random.seed(seed)
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
def save_model(net, filename):
"""Save trained model."""
if not os.path.exists(params.model_root):
os.makedirs(params.model_root)
torch.save(net.state_dict(),
os.path.join(params.model_root, filename))
print("save pretrained model to: {}".format(
os.path.join(params.model_root, filename)))