-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBagDataset.py
82 lines (61 loc) · 2.89 KB
/
BagDataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
import torch
import torch.nn as nn
from torch.utils.data import DataLoader
import torchvision.models as models
import torchvision.transforms.functional as VF
from torchvision import transforms
from torchvision.io import read_image, ImageReadMode
import sys, argparse, os, glob, copy
import pandas as pd
import numpy as np
from PIL import Image
from collections import OrderedDict
# from sklearn.utils import shuffle
from torch.utils.data import Dataset
import re
def get_pos(data_dir):
os.path.exists(data_dir)
files = sorted(glob.glob(os.path.join(data_dir, '*.png'), recursive=True), key=lambda f: int(re.split("[_ -]",os.path.basename(f))[1]))
# print("Found {} position files, the files are {}".format(len(files),files) )
image_pos_list = []
for file in files:
basename = os.path.basename(file).rstrip(".png")
image_pos = [re.split("[_ -]", basename)[1]] + re.split("[_ -]", basename)[3:7]
image_pos = [int(x) for x in image_pos]
image_pos_list.append(image_pos)
return image_pos_list, files
class BagDataset(Dataset):
def __init__(self, data_dir: str, label_file, transforms=None):
'''
data_dir: directory to find files
label_file: path to label_file
transforms: which transformations should be used for the data set
'''
super(BagDataset).__init__()
self.data_dir=data_dir
self.transforms = transforms
# self.files = sorted(glob.glob(os.path.join(data_dir, '*.png'), recursive=True), key=lambda f: int(re.split("[_ -]",os.path.basename(f))[1]))
# self.files = sorted(glob.glob(os.path.join(data_dir, '*.png'), recursive=True), key=lambda f: int(re.split("[_ -]",os.path.basename(f))[1]))
# print("Found {} tiles files, the files are {}".format(len(self.files),self.files) )
#extract tile position from image name
self.tile_pos,self.files = get_pos(data_dir)
#extract bag name from slide name/image folder name
self.bag_name = os.path.basename(data_dir)
#read label file
metadata = pd.read_csv(label_file)
#transform word label into integer labels and add to the dataframe
#extract bag label
self.bag_label = metadata.loc[metadata["image_nr"] == self.bag_name, 'label'].values[0]
def __len__(self):
return len(self.files)
def __getitem__(self, idx):
filepath = self.files[idx]
tile_pos = self.tile_pos[idx]
image = Image.open(filepath)
image = image.convert('RGB')
if self.transforms:
image = self.transforms(image)
# mean, std = image.mean([0,1]), image.std([0,1])
# image = transforms.Normalize(mean, std)(image)
# return dict(tile=image, tile_pos=tile_pos, bag_label=self.bag_label[idx])
return dict(tile=image, tile_pos=tile_pos, bag_label=self.bag_label)