-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathevaluate.py
63 lines (46 loc) · 1.84 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import torch
import torch.distributed as dist
from sklearn.metrics import roc_auc_score
# def evaluate(model, dataloader, criterion, device, world_size, loc=0, scale=1):
# """ Evaluate a model on a specific dataloader, with distributed communication (if necessary) """
# model.eval()
# N = torch.zeros(1).to(device)
# score = torch.zeros(1).to(device)
# with torch.no_grad():
# for graph in dataloader:
# graph = graph.to(device)
# out = model(graph).squeeze()
# n = graph.y.size(0)
# N += n
# score += n*criterion(out*scale + loc, graph.y)
# model.train()
# if world_size > 1:
# dist.all_reduce(score)
# dist.all_reduce(N)
# return (score/N).item()
def evaluate(model, dataloader, criterion, device):
""" Evaluate a model on a specific dataloader, with distributed communication (if necessary) """
model.eval()
valid_score =[]
loss_sum = 0
with torch.no_grad():
for graph in dataloader:
graph = graph.to(device)
out = model(graph).squeeze()
target = graph.y.squeeze()
NA_Mat = torch.where(torch.abs(target)<0.5, torch.zeros_like(target), torch.ones_like(target))
out = out * NA_Mat
target = (target+1.0)/2.0 * NA_Mat
loss = criterion(out, target)
# print(f" loss: {loss} shape: {loss.shape}")
# break
loss= loss.mean()
loss_sum += loss.item()
pred = torch.sigmoid(out) * NA_Mat
target=target.detach().cpu().numpy()
pred=pred.detach().cpu().numpy()
try:
valid_score.append(roc_auc_score(target.ravel(), pred.ravel()))
except:
pass
return loss_sum/len(dataloader), valid_score