-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtime.py
60 lines (47 loc) · 1.99 KB
/
time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import time
import wandb
from tqdm import tqdm
import torch
from models.segnn.segnn import SEGNN
from qm9.dataset import QM9
import utils
time_dict = {'time': 0, 'counter': 0}
def main(gpu, model, args):
if args.gpus == 0:
device = 'cpu'
else:
device = 'cuda:' + str(gpu)
if args.gpus > 1:
dist.init_process_group("nccl", rank=gpu, world_size=args.gpus)
torch.cuda.set_device(gpu)
model = model.to(device)
if args.gpus > 1:
model = nn.parallel.DistributedDataParallel(model, device_ids=[gpu], output_device=gpu)
dataloader = train_loader = utils.make_dataloader(QM9(args.root, args.target, args.radius, "train", args.lmax_attr,
feature_type=args.feature_type), args.batch_size, args.num_workers, args.gpus, gpu)
if args.log:
wandb.init(project="SEGNN " + args.dataset + " " + "time", name=args.ID, config=args, entity="segnn")
n = 0
with tqdm(total=args.forward_passes + args.warmup) as pbar:
while n < args.forward_passes + args.warmup:
for i, graph in enumerate(dataloader):
graph = graph.to(device)
if n > args.warmup:
if device != "cpu":
torch.cuda.synchronize()
t1 = time.time()
out = model(graph) # Forward pass
if n > args.warmup:
if device != "cpu":
torch.cuda.synchronize()
t2 = time.time()
time_dict['time'] += t2 - t1
time_dict['counter'] += 1
pbar.update()
n += 1
if n == args.forward_passes + args.warmup:
break
T = time_dict['time']/time_dict['counter']
if args.log and gpu == 0:
wandb.log({"time": T})
print("Forward pass time is", T, "over", args.forward_passes, "forward passes with batch size", args.batch_size)