-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathralamb.py
115 lines (93 loc) · 4.36 KB
/
ralamb.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
import torch, math
from torch.optim.optimizer import Optimizer
# RAdam + LARS
class Ralamb(Optimizer):
def __init__(self,
params,
lr=1e-3,
betas=(0.9, 0.999),
eps=1e-8,
weight_decay=0):
defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay)
self.buffer = [[None, None, None] for ind in range(10)]
super(Ralamb, self).__init__(params, defaults)
def __setstate__(self, state):
super(Ralamb, self).__setstate__(state)
def step(self, closure=None):
loss = None
if closure is not None:
loss = closure()
for group in self.param_groups:
for p in group['params']:
if p.grad is None:
continue
grad = p.grad.data.float()
if grad.is_sparse:
raise RuntimeError(
'Ralamb does not support sparse gradients')
p_data_fp32 = p.data.float()
state = self.state[p]
if len(state) == 0:
state['step'] = 0
state['exp_avg'] = torch.zeros_like(p_data_fp32)
state['exp_avg_sq'] = torch.zeros_like(p_data_fp32)
else:
state['exp_avg'] = state['exp_avg'].type_as(p_data_fp32)
state['exp_avg_sq'] = state['exp_avg_sq'].type_as(
p_data_fp32)
exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq']
beta1, beta2 = group['betas']
# Decay the first and second moment running average coefficient
# m_t
exp_avg.mul_(beta1).add_(1 - beta1, grad)
# v_t
exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad)
state['step'] += 1
buffered = self.buffer[int(state['step'] % 10)]
if state['step'] == buffered[0]:
N_sma, radam_step_size = buffered[1], buffered[2]
else:
buffered[0] = state['step']
beta2_t = beta2**state['step']
N_sma_max = 2 / (1 - beta2) - 1
N_sma = N_sma_max - 2 * state['step'] * beta2_t / (1 -
beta2_t)
buffered[1] = N_sma
# more conservative since it's an approximated value
if N_sma >= 5:
radam_step_size = math.sqrt(
(1 - beta2_t) * (N_sma - 4) / (N_sma_max - 4) *
(N_sma - 2) / N_sma * N_sma_max /
(N_sma_max - 2)) / (1 - beta1**state['step'])
else:
radam_step_size = 1.0 / (1 - beta1**state['step'])
buffered[2] = radam_step_size
if group['weight_decay'] != 0:
p_data_fp32.add_(-group['weight_decay'] * group['lr'],
p_data_fp32)
# more conservative since it's an approximated value
radam_step = p_data_fp32.clone()
if N_sma >= 5:
denom = exp_avg_sq.sqrt().add_(group['eps'])
radam_step.addcdiv_(-radam_step_size * group['lr'],
exp_avg, denom)
else:
radam_step.add_(-radam_step_size * group['lr'], exp_avg)
radam_norm = radam_step.pow(2).sum().sqrt()
weight_norm = p.data.pow(2).sum().sqrt().clamp(0, 10)
if weight_norm == 0 or radam_norm == 0:
trust_ratio = 1
else:
trust_ratio = weight_norm / radam_norm
state['weight_norm'] = weight_norm
state['adam_norm'] = radam_norm
state['trust_ratio'] = trust_ratio
if N_sma >= 5:
p_data_fp32.addcdiv_(
-radam_step_size * group['lr'] * trust_ratio, exp_avg,
denom)
else:
p_data_fp32.add_(
-radam_step_size * group['lr'] * trust_ratio, exp_avg)
p.data.copy_(p_data_fp32)
return loss