-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNew_Jersey_Data_LONG_2012.R
104 lines (65 loc) · 5.21 KB
/
New_Jersey_Data_LONG_2012.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
################################################################################
###
### Create New Jersey Data LONG for 2012
###
################################################################################
### Load SGP Package
require(SGP)
### Load data
New_Jersey_Data_ELA <- read.csv("Data/Base_Files/NJASK_2011_2012_ELA.csv", sep="|")
New_Jersey_Data_MATH <- read.csv("Data/Base_Files/NJASK_2011_2012_MATH.csv", sep="|")
### Combine ELA and MATH
New_Jersey_Data_LONG_2012 <- rbind(New_Jersey_Data_ELA, New_Jersey_Data_MATH)
### Tidy up data
names(New_Jersey_Data_LONG_2012) <- c("YEAR", "Testing.Program", "CONTENT_AREA", "GRADE", "ID", "Student.ID..SSID.", "DISTRICT_NUMBER", "School.Code", "County.Name",
"DISTRICT_NAME", "SCHOOL_NAME", "DFG", "Gender", "Race.Ethnicity.Combined","Title.I.LAL", "Title.I.Math", "Special.Education..SE.", "General.ED", "Former.LEP",
"Current.LEP", "Time.in.District.Less.Than.1.Year", "Economically.Disadvantaged", "Migrant", "Homeless", "SCALE_SCORE", "ACHIEVEMENT_LEVEL")
New_Jersey_Data_LONG_2012$Homeless <- NULL
New_Jersey_Data_LONG_2012$Former.LEP <- NULL
New_Jersey_Data_LONG_2012$Testing.Program <- NULL
New_Jersey_Data_LONG_2012$CONTENT_AREA <- as.character(New_Jersey_Data_LONG_2012$CONTENT_AREA)
New_Jersey_Data_LONG_2012$CONTENT_AREA[New_Jersey_Data_LONG_2012$CONTENT_AREA=="Math"] <- "MATHEMATICS"
New_Jersey_Data_LONG_2012$ID <- as.character(New_Jersey_Data_LONG_2012$ID)
New_Jersey_Data_LONG_2012$Gender[New_Jersey_Data_LONG_2012$Gender==""] <- NA
New_Jersey_Data_LONG_2012$Gender <- factor(New_Jersey_Data_LONG_2012$Gender)
levels(New_Jersey_Data_LONG_2012$Gender) <- c("Female", "Male")
levels(New_Jersey_Data_LONG_2012$Race.Ethnicity.Combined) <- c("Asian", "Black", "Hispanic", "Native American", "Other", "Pacific Islander", "White")
levels(New_Jersey_Data_LONG_2012$General.ED) <- c("General Education: No", "General Education: Yes")
New_Jersey_Data_LONG_2012$Current.LEP[New_Jersey_Data_LONG_2012$Current.LEP==""] <- NA
New_Jersey_Data_LONG_2012$Current.LEP <- factor(New_Jersey_Data_LONG_2012$Current.LEP)
levels(New_Jersey_Data_LONG_2012$Current.LEP) <- c("Less than 1 Year", "1 Year", "2 Years", "3 Years", "Yes")
levels(New_Jersey_Data_LONG_2012$Time.in.District.Less.Than.1.Year) <- c("Time in District Less than 1 Year: No", "Time in District Less than 1 Year: Yes")
levels(New_Jersey_Data_LONG_2012$Economically.Disadvantaged) <- c("Economically Disadvantaged: Yes", "Economically Disadvantaged: No", "Economically Disadvantaged: Yes")
New_Jersey_Data_LONG_2012$Economically.Disadvantaged <- as.character(New_Jersey_Data_LONG_2012$Economically.Disadvantaged)
New_Jersey_Data_LONG_2012$Economically.Disadvantaged <- factor(New_Jersey_Data_LONG_2012$Economically.Disadvantaged)
levels(New_Jersey_Data_LONG_2012$Migrant) <- c("Migrant: No", "Migrant: Yes")
levels(New_Jersey_Data_LONG_2012$Title.I.LAL) <- "Title I LAL: No"
levels(New_Jersey_Data_LONG_2012$Title.I.Math) <- "Title I Math: No"
New_Jersey_Data_LONG_2012$ACHIEVEMENT_LEVEL[New_Jersey_Data_LONG_2012$ACHIEVEMENT_LEVEL==""] <- NA
New_Jersey_Data_LONG_2012$ACHIEVEMENT_LEVEL <- factor(New_Jersey_Data_LONG_2012$ACHIEVEMENT_LEVEL)
New_Jersey_Data_LONG_2012$ACHIEVEMENT_LEVEL <- factor(New_Jersey_Data_LONG_2012$ACHIEVEMENT_LEVEL, levels=c("Partially Proficient", "Proficient", "Advanced Proficient"), ordered=TRUE)
New_Jersey_Data_LONG_2012$ID[New_Jersey_Data_LONG_2012$ID=="NULL"] <- NA
New_Jersey_Data_LONG_2012$SCHOOL_NUMBER <- New_Jersey_Data_LONG_2012$DISTRICT_NUMBER*1000 + New_Jersey_Data_LONG_2012$School.Code
levels(New_Jersey_Data_LONG_2012$Title.I.LAL) <- "Title I LAL: No"
levels(New_Jersey_Data_LONG_2012$Title.I.Math) <- "Title I Math: No"
### Indentify Valid Cases
New_Jersey_Data_LONG_2012$VALID_CASE <- "VALID_CASE"
New_Jersey_Data_LONG_2012$VALID_CASE[is.na(New_Jersey_Data_LONG_2012$ID)] <- "INVALID_CASE"
New_Jersey_Data_LONG_2012 <- as.data.table(New_Jersey_Data_LONG_2012)
setkeyv(New_Jersey_Data_LONG_2012, c("VALID_CASE", "ID", "YEAR", "CONTENT_AREA"))
# Inspect the dublicates first to see what's going on.
dup.ids<-New_Jersey_Data_LONG_2012$ID[which(duplicated(New_Jersey_Data_LONG_2012, by=key(New_Jersey_Data_LONG_2012)))]
dups<-New_Jersey_Data_LONG_2012[New_Jersey_Data_LONG_2012$ID %in% dup.ids]
length(dup.ids) # only a handful, but we'll try to keep the best of the lot
dim(dups)
summary(dups)
# Invalidate lowest score for duplicates.
setkeyv(New_Jersey_Data_LONG_2012, c("VALID_CASE", "ID", "YEAR", "CONTENT_AREA", "SCALE_SCORE"))
setkeyv(New_Jersey_Data_LONG_2012, c("VALID_CASE", "ID", "YEAR", "CONTENT_AREA"))
New_Jersey_Data_LONG_2012[["VALID_CASE"]][which(duplicated(New_Jersey_Data_LONG_2012, by=key(New_Jersey_Data_LONG_2012)) & New_Jersey_Data_LONG_2012$VALID_CASE=="VALID_CASE")-1] <- "INVALID_CASE"
# ENROLLMENT_STATUS
New_Jersey_Data_LONG_2012$STATE_ENROLLMENT_STATUS <- factor(1, levels=0:1, labels=c("Enrolled State: Yes", "Enrolled State: No"))
New_Jersey_Data_LONG_2012$DISTRICT_ENROLLMENT_STATUS <- factor(1, levels=0:1, labels=c("Enrolled District: Yes", "Enrolled District: No"))
New_Jersey_Data_LONG_2012$SCHOOL_ENROLLMENT_STATUS <- factor(1, levels=0:1, labels=c("Enrolled School: Yes", "Enrolled School: No"))
# Save the results
save(New_Jersey_Data_LONG_2012, file="Data/New_Jersey_Data_LONG_2012.Rdata")