-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNew_Jersey_Data_LONG_2015.R
200 lines (144 loc) · 11.1 KB
/
New_Jersey_Data_LONG_2015.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
################################################################################
###
### Create New Jersey Data LONG for 2015
###
################################################################################
### Load SGP Package
require(SGP)
require(data.table)
### Load 2015 raw PARCC data
NJ_ELA <- fread("Data/Base_Files/PARCC Data Extract for NCIEA 14-15 SY_ELA_count=773710_repull.csv", sep="|", colClasses=rep("character", 37)) # Stopped reading at empty line 773712 but text exists afterwards (discarded): (773710 row(s) affected)
NJ_MATH<- fread("Data/Base_Files/PARCC Data Extract for NCIEA 14-15 SY_Math related_count=745646_repull.csv", sep="|", colClasses=rep("character", 37)) # ... (discarded): (745646 row(s) affected)
New_Jersey_Data_LONG_2015 <- rbindlist(list(NJ_ELA, NJ_MATH))
###
### Tidy up data
###
#### Rename variables
setnames(New_Jersey_Data_LONG_2015, names(New_Jersey_Data_LONG_2015), gsub(" |/", "", names(New_Jersey_Data_LONG_2015)))
setnames(New_Jersey_Data_LONG_2015,
c("SSID", "IRTTheta", "SummativeScaleScore", "SummativeCSEM", "Subject", "GradeLevelWhenAssessed", "SummativePerformanceLevel",
"ResponsibleSchoolInstitutionIdentifier", "ResponsibleSchoolInstitutionName", "ResponsibleDistrictIdentifier", "ResponsibleDistrictName", "ResponsibleCountyName",
"SpecialEducationClassification", "TitleIIILimitedEnglishProficientParticipationStatus", "EconomicallyDisadvantaged"),
c("ID", "SCALE_SCORE", "SCALE_SCORE_ACTUAL", "SCALE_SCORE_CSEM", "CONTENT_AREA", "GRADE", "ACHIEVEMENT_LEVEL",
"SCHOOL_NUMBER", "SCHOOL_NAME", "DISTRICT_NUMBER", "DISTRICT_NAME", "County_Name",
"Special_Education__SE_", "Current_LEP", "Economically_Disadvantaged"))
#### YEAR
New_Jersey_Data_LONG_2015[, YEAR := '2015']
New_Jersey_Data_LONG_2015[, 1 := NULL] # "AssessmentYear" -- doesn't work with name for some reason (?!?)
#### CONTENT_AREA / "subject"
New_Jersey_Data_LONG_2015[, CONTENT_AREA := toupper(gsub(" ", "_", CONTENT_AREA))]
New_Jersey_Data_LONG_2015[which(CONTENT_AREA == "ENGLISH_LANGUAGE_ARTS/LITERACY"), CONTENT_AREA := "ELA"]
#### GRADE
New_Jersey_Data_LONG_2015[, GRADE := as.character(as.numeric(GRADE))]
New_Jersey_Data_LONG_2015[which(!CONTENT_AREA %in% c("ELA", "MATHEMATICS")), GRADE := "EOCT"]
#### ACH LEVEL / "Summative Performance Level"
New_Jersey_Data_LONG_2015[, ACHIEVEMENT_LEVEL := paste("Level", ACHIEVEMENT_LEVEL)]
#### Demographic Variables
New_Jersey_Data_LONG_2015[, Race_Ethnicity_Combined := as.character(NA)]
New_Jersey_Data_LONG_2015[which(HispanicorLatinoEthnicity=="Y"), Race_Ethnicity_Combined := "Hispanic"]
New_Jersey_Data_LONG_2015[which(AmericanIndianorAlaskaNative=="Y"), Race_Ethnicity_Combined := "Native American"]
New_Jersey_Data_LONG_2015[which(Asian=="Y"), Race_Ethnicity_Combined := "Asian"]
New_Jersey_Data_LONG_2015[which(BlackorAfricanAmerican=="Y"), Race_Ethnicity_Combined := "Black"]
New_Jersey_Data_LONG_2015[which(NativeHawaiianorOtherPacificIslander=="Y"), Race_Ethnicity_Combined := "Pacific Islander"]
New_Jersey_Data_LONG_2015[which(White=="Y"), Race_Ethnicity_Combined := "White"]
New_Jersey_Data_LONG_2015[which(TwoorMoreRaces=="Y"), Race_Ethnicity_Combined := "Two or More Races"]
New_Jersey_Data_LONG_2015[which(is.na(Race_Ethnicity_Combined)), Race_Ethnicity_Combined := "Other"]
New_Jersey_Data_LONG_2015[,
c("HispanicorLatinoEthnicity", "AmericanIndianorAlaskaNative", "Asian", "BlackorAfricanAmerican", "NativeHawaiianorOtherPacificIslander", "White", "TwoorMoreRaces") := NULL]
New_Jersey_Data_LONG_2015[,Gender:=as.factor(Gender)]
setattr(New_Jersey_Data_LONG_2015$Gender, "levels", c("Female", "Male"))
New_Jersey_Data_LONG_2015[Special_Education__SE_ == "", Special_Education__SE_ := as.character(NA)]
New_Jersey_Data_LONG_2015[Current_LEP == "", Current_LEP := as.character(NA)]
New_Jersey_Data_LONG_2015[,Current_LEP:=factor(Current_LEP)]
setattr(New_Jersey_Data_LONG_2015$Current_LEP, "levels", c("No", "Yes"))
New_Jersey_Data_LONG_2015[,Current_LEP:=as.character(Current_LEP)]
New_Jersey_Data_LONG_2015[Economically_Disadvantaged=="", Economically_Disadvantaged:=as.character(NA)]
New_Jersey_Data_LONG_2015[,Economically_Disadvantaged:=factor(Economically_Disadvantaged)]
setattr(New_Jersey_Data_LONG_2015$Economically_Disadvantaged, "levels", c("Economically Disadvantaged: No", "Economically Disadvantaged: Yes"))
New_Jersey_Data_LONG_2015[,Economically_Disadvantaged:=as.character(Economically_Disadvantaged)]
New_Jersey_Data_LONG_2015[Migrant == "", Migrant := as.character(NA)]
New_Jersey_Data_LONG_2015[,Migrant:=factor(Migrant)]
setattr(New_Jersey_Data_LONG_2015$Migrant, "levels", c("Migrant: No", "Migrant: Yes"))
New_Jersey_Data_LONG_2015[,Migrant:=as.character(Migrant)]
#### District and School Names
New_Jersey_Data_LONG_2015[,DISTRICT_NAME:=as.factor(DISTRICT_NAME)]
setattr(New_Jersey_Data_LONG_2015$DISTRICT_NAME, "levels", sapply(levels(New_Jersey_Data_LONG_2015$DISTRICT_NAME), capwords))
New_Jersey_Data_LONG_2015[,SCHOOL_NAME:=as.factor(SCHOOL_NAME)]
setattr(New_Jersey_Data_LONG_2015$SCHOOL_NAME, "levels", sapply(levels(New_Jersey_Data_LONG_2015$SCHOOL_NAME), capwords))
### ENROLLMENT_STATUS
New_Jersey_Data_LONG_2015[,STATE_ENROLLMENT_STATUS:=factor(1, levels=0:1, labels=c("Enrolled State: No", "Enrolled State: Yes"))]
New_Jersey_Data_LONG_2015[,DISTRICT_ENROLLMENT_STATUS:=factor(1, levels=0:1, labels=c("Enrolled District: No", "Enrolled District: Yes"))]
New_Jersey_Data_LONG_2015[,SCHOOL_ENROLLMENT_STATUS:=factor(1, levels=0:1, labels=c("Enrolled School: No", "Enrolled School: Yes"))]
#### Set SCALE_SCORE to numeric and only include non-NA scores in long data
New_Jersey_Data_LONG_2015[,SCALE_SCORE:=as.numeric(SCALE_SCORE)]
New_Jersey_Data_LONG_2015[,SCALE_SCORE_ACTUAL:=as.numeric(SCALE_SCORE_ACTUAL)]
New_Jersey_Data_LONG_2015[,SCALE_SCORE_CSEM:=as.numeric(SCALE_SCORE_CSEM)]
New_Jersey_Data_LONG_2015 <- New_Jersey_Data_LONG_2015[!is.na(SCALE_SCORE)]
###
### Indentify Valid Cases
###
New_Jersey_Data_LONG_2015[, VALID_CASE := "VALID_CASE"]
### Invalidate Cases with missing IDs - Not and issue with esIDs
New_Jersey_Data_LONG_2015[which(ID==""), VALID_CASE := "INVALID_CASE"]
### Invalidate Grades not used:
New_Jersey_Data_LONG_2015[which(GRADE %in% c(NA,1,2,12)), VALID_CASE := "INVALID_CASE"] # 11th grade ELA not used, but leave it Valid just in case.
New_Jersey_Data_LONG_2015[which(GRADE %in% 9:11 & CONTENT_AREA == "MATHEMATICS"), VALID_CASE := "INVALID_CASE"]
### Invalidate Content Areas with too few students to analyze
New_Jersey_Data_LONG_2015[which(CONTENT_AREA %in% c("INTEGRATED_MATHEMATICS_I", "INTEGRATED_MATHEMATICS_II", "INTEGRATED_MATHEMATICS_III")), VALID_CASE := "INVALID_CASE"]
setkey(New_Jersey_Data_LONG_2015, VALID_CASE, CONTENT_AREA, GRADE, ID, SCALE_SCORE)
setkey(New_Jersey_Data_LONG_2015, VALID_CASE, CONTENT_AREA, GRADE, ID)
# sum(duplicated(New_Jersey_Data_LONG_2015[VALID_CASE != "INVALID_CASE"], by=key(New_Jersey_Data_LONG_2015))) # 10 duplicates with valid SSIDs -- all have same SSID and esID, so appear valid - take the highest score
# dups <- data.table(New_Jersey_Data_LONG_2015[unique(c(which(duplicated(New_Jersey_Data_LONG_2015, by=key(New_Jsersey_Data_LONG_2015)))-1, which(duplicated(New_Jersey_Data_LONG_2015)))), ], key=key(New_Jersey_Data_LONG_2015))
New_Jersey_Data_LONG_2015[which(duplicated(New_Jersey_Data_LONG_2015, by=key(New_Jersey_Data_LONG_2015)))-1, VALID_CASE := "INVALID_CASE"]
# Still 3 kids with duplicates if Grade ignored -- take highest score again ...
setkey(New_Jersey_Data_LONG_2015, VALID_CASE, CONTENT_AREA, ID, SCALE_SCORE)
setkey(New_Jersey_Data_LONG_2015, VALID_CASE, CONTENT_AREA, ID)
New_Jersey_Data_LONG_2015[which(duplicated(New_Jersey_Data_LONG_2015, by=key(New_Jersey_Data_LONG_2015)))-1, VALID_CASE := "INVALID_CASE"]
# Load scaling constants
scaling.constants <- fread("Data/Base_Files/2014-2015 PARCC Scaling Constants.csv"))
setkey(scaling.constants, CONTENT_AREA, GRADE)
setkey(New_Jersey_Data_LONG_2015, CONTENT_AREA, GRADE)
New_Jersey_Data_LONG_2015 <- scaling.constants[New_Jersey_Data_LONG_2015]
setnames(New_Jersey_Data_LONG_2015, "SCALE_SCORE_CSEM", "SCALE_SCORE_CSEM_SS")
New_Jersey_Data_LONG_2015[,SCALE_SCORE_CSEM:=(as.numeric(SCALE_SCORE_CSEM_SS))/a]
New_Jersey_Data_LONG_2015[,a:=NULL]
New_Jersey_Data_LONG_2015[,b:=NULL]
### Subset new long data and save the results -- only keep variables already included in New_Jersey_SGP@Data
load("Data/New_Jersey_SGP.Rdata")
setnames(New_Jersey_SGP@Data, gsub("[.]", "_", names(New_Jersey_SGP@Data)))
New_Jersey_Data_LONG_2015 <- New_Jersey_Data_LONG_2015[, c(intersect(names(New_Jersey_SGP@Data), names(New_Jersey_Data_LONG_2015)), "esID", "SCALE_SCORE_ACTUAL", "SCALE_SCORE_CSEM"), with=FALSE]
setkeyv(New_Jersey_Data_LONG_2015, c("VALID_CASE", "CONTENT_AREA", "YEAR", "ID"))
save(New_Jersey_Data_LONG_2015, file="Data/New_Jersey_Data_LONG_2015.Rdata")
###
### Clean and prep 2014 New Jersey SGP object using SSID as ID
###
### Set Data Names and @Names to new convention
New_Jersey_SGP@Names <- read.csv("/media/Data/Dropbox/Github_Repos/Packages/SGPstateData/variable_name_lookup/NJ_Variable_Name_Lookup.csv", colClasses=c(rep("character",4), "logical"))
SGPstateData[["NJ"]][["Variable_Name_Lookup"]] <- read.csv("/media/Data/Dropbox/Github_Repos/Packages/SGPstateData/variable_name_lookup/NJ_Variable_Name_Lookup.csv", colClasses=c(rep("character",4), "logical"))
setnames(New_Jersey_SGP@Data, gsub("[.]", "_", names(New_Jersey_SGP@Data)))
### Switch ID and
id.lookup <- unique(New_Jersey_Data_LONG_2015[, list(ID, esID, YEAR, VALID_CASE)])[!is.na(esID) & ID != "" & VALID_CASE=="VALID_CASE"]
id.lookup <- id.lookup[, list(ID, esID)]
setnames(id.lookup, c("ID", "esID"), c("SSID", "ID"))
setkey(New_Jersey_SGP@Data, ID)
setkey(id.lookup, ID)
New_Jersey_SGP@Data <- id.lookup[New_Jersey_SGP@Data]
table(is.na(New_Jersey_SGP@Data$Student_ID__SSID_), New_Jersey_SGP@Data$YEAR)
New_Jersey_SGP@Data[which(is.na(Student_ID__SSID_)), Student_ID__SSID_ := SSID]
New_Jersey_SGP@Data[, SSID := NULL]
table(is.na(New_Jersey_SGP@Data$Student_ID__SSID_), New_Jersey_SGP@Data$YEAR)
setnames(New_Jersey_SGP@Data, c("Student_ID__SSID_", "ID"), c("ID", "esID"))
### Invalidate NA SSIDs and duplicates
New_Jersey_SGP@Data[which(is.na(ID)), VALID_CASE := "INVALID_CASE"]
New_Jersey_SGP@Data[which(ID=="NULL"), VALID_CASE := "INVALID_CASE"]
# All duplicates (4 and 12 respectively below) are from 2013 and have different esID values. Different kids?
setkey(New_Jersey_SGP@Data, VALID_CASE, CONTENT_AREA, YEAR, GRADE, ID, SCALE_SCORE)
setkey(New_Jersey_SGP@Data, VALID_CASE, CONTENT_AREA, YEAR, GRADE, ID)
# sum(duplicated(New_Jersey_SGP@Data["VALID_CASE"]))
# dups <- data.table(New_Jersey_SGP@Data[unique(c(which(duplicated(New_Jersey_SGP@Data))-1, which(duplicated(New_Jersey_SGP@Data)))), ], key=key(New_Jersey_SGP@Data))
New_Jersey_SGP@Data[which(duplicated(New_Jersey_SGP@Data))-1, VALID_CASE := "INVALID_CASE"]
setkey(New_Jersey_SGP@Data, VALID_CASE, CONTENT_AREA, YEAR, ID, SCALE_SCORE)
setkey(New_Jersey_SGP@Data, VALID_CASE, CONTENT_AREA, YEAR, ID)
New_Jersey_SGP@Data[which(duplicated(New_Jersey_SGP@Data))-1, VALID_CASE := "INVALID_CASE"]
setkeyv(New_Jersey_SGP@Data, SGP:::getKey(New_Jersey_SGP))
save(New_Jersey_SGP, file="Data/New_Jersey_SGP.Rdata")