-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathNew_Jersey_SGP_2016.R
90 lines (66 loc) · 2.47 KB
/
New_Jersey_SGP_2016.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
####################################################################
###
### Code to update SGP analyses for New Jersey for 2016
###
####################################################################
### Load SGP Package
require(SGP)
require(data.table)
### Load data
load("Data/New_Jersey_Data_LONG_2016.Rdata")
load("Data/New_Jersey_SGP.Rdata")
#### Source Configurations
source("SGP_CONFIG/2016/ELA.R")
source("SGP_CONFIG/2016/MATHEMATICS.R")
NJ.config <- c(ELA_2016.config, MATHEMATICS_2016.config, ALGEBRA_I_2016.config, GEOMETRY_2016.config, ALGEBRA_II_2016.config)
### STEP 1: updateSGP for sgp.percentiles and sgp.percentiles.simex
New_Jersey_SGP <- updateSGP(
New_Jersey_SGP,
New_Jersey_Data_LONG_2016,
state="NJ_ORIGINAL",
sgp.config=NJ.config,
steps=c("prepareSGP", "analyzeSGP"),
sgp.percentiles=TRUE,
sgp.projections=FALSE,
sgp.projections.lagged=FALSE,
sgp.percentiles.baseline=FALSE,
sgp.projections.baseline=FALSE,
sgp.projections.lagged.baseline=FALSE,
calculate.simex=TRUE,
save.intermediate.results=FALSE,
parallel.config=list(BACKEND="PARALLEL", WORKERS=list(PERCENTILES=10)))
### STEP 2: analyzeSGP for student growth projections
New_Jersey_SGP <- analyzeSGP(
New_Jersey_SGP,
state="NJ_ORIGINAL",
sgp.config=NJ.config,
sgp.percentiles=FALSE,
sgp.projections=TRUE,
sgp.projections.lagged=TRUE,
sgp.percentiles.baseline=FALSE,
sgp.projections.baseline=FALSE,
sgp.projections.lagged.baseline=FALSE,
parallel.config=list(BACKEND="FOREACH", TYPE="doParallel", WORKERS=list(PROJECTIONS=10, LAGGED_PROJECTIONS=10)))
### STEP 3: combineSGP
New_Jersey_SGP <- combineSGP(
New_Jersey_SGP,
state="NJ_ORIGINAL",
years="2016",
sgp.target.scale.scores=TRUE,
sgp.config=NJ.config,
parallel.config=list(BACKEND="FOREACH", TYPE="doParallel", WORKERS=list(SGP_SCALE_SCORE_TARGETS=10)))
### STEP 4: summarizeSGP
New_Jersey_SGP <- summarizeSGP(
New_Jersey_SGP,
state="NJ_ORIGINAL",
parallel.config=list(BACKEND="FOREACH", TYPE="doParallel", WORKERS=list(SUMMARY=20)))
### STEP 5: visualizeSGP
visualizeSGP(
New_Jersey_SGP,
state="NJ_ORIGINAL",
sgPlot.content_areas = c("ELA", "MATHEMATICS"),
gaPlot.content_areas = c("ELA", "MATHEMATICS"),
sgPlot.demo.report=TRUE,
parallel.config=list(BACKEND='FOREACH', TYPE="doParallel", WORKERS=list(GA_PLOTS=4, SG_PLOTS=1)))
### Save results
save(New_Jersey_SGP, file="Data/New_Jersey_SGP.Rdata")