-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmodels.py
260 lines (210 loc) · 8.59 KB
/
models.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
models.py: This file contains the functions and class
defining the ResNet and the classifier.
"""
__author__ = "Duret Jarod, Brignatz Vincent"
__license__ = "MIT"
import math
import torch
import torch.nn as nn
import torch.nn.functional as F
from scipy.stats import kurtosis, skew
def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
"""3x3 convolution with padding"""
return nn.Conv2d(in_planes, out_planes, kernel_size=3, stride=stride,
padding=dilation, groups=groups, bias=False, dilation=dilation)
def conv1x1(in_planes, out_planes, stride=1):
"""1x1 convolution"""
return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)
class BasicBlock(nn.Module):
expansion = 1
def __init__(self, inplanes, planes, stride=1, downsample=None, groups=1,
base_width=64, dilation=1, norm_layer=None):
super(BasicBlock, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
if groups != 1 or base_width != 64:
raise ValueError('BasicBlock only supports groups=1 and base_width=64')
if dilation > 1:
raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
# Both self.conv1 and self.downsample layers downsample the input when stride != 1
self.conv1 = conv3x3(inplanes, planes, stride)
self.bn1 = norm_layer(planes)
self.relu = nn.ReLU(inplace=True)
self.conv2 = conv3x3(planes, planes)
self.bn2 = norm_layer(planes)
self.downsample = downsample
self.stride = stride
def forward(self, x):
identity = x
out = self.conv1(x)
out = self.bn1(out)
out = self.relu(out)
out = self.conv2(out)
out = self.bn2(out)
if self.downsample is not None:
identity = self.downsample(x)
out += identity
out = self.relu(out)
return out
class ResNet(nn.Module):
def __init__(self, block, layers, num_filters, emb_size, pooling_mode='statistical', features_per_frame=30,
zero_init_residual=False, groups=1, width_per_group=64, replace_stride_with_dilation=None,
norm_layer=None):
super(ResNet, self).__init__()
if norm_layer is None:
norm_layer = nn.BatchNorm2d
self._norm_layer = norm_layer
self.inplanes = num_filters[0]
self.dilation = 1
if replace_stride_with_dilation is None:
# each element in the tuple indicates if we should replace
# the 2x2 stride with a dilated convolution instead
replace_stride_with_dilation = [False, False, False]
if len(replace_stride_with_dilation) != 3:
raise ValueError("replace_stride_with_dilation should be None "
"or a 3-element tuple, got {}".format(replace_stride_with_dilation))
self.groups = groups
self.base_width = width_per_group
self.conv1 = nn.Conv2d(1, self.inplanes, kernel_size=3, stride=1, padding=1,
bias=False) # 3 1 1
self.bn1 = norm_layer(self.inplanes)
self.relu = nn.ReLU(inplace=True)
self.layer1 = self._make_layer(block, num_filters[0], layers[0], stride=1)
self.layer2 = self._make_layer(block, num_filters[1], layers[1], stride=2)
self.layer3 = self._make_layer(block, num_filters[2], layers[2], stride=2)
self.layer4 = self._make_layer(block, num_filters[3], layers[3], stride=2)
self.pooling_mode = pooling_mode
pooling_size = 2 if self.pooling_mode in ['statistical', 'std_skew', 'std_kurtosis'] else 1
self.fc = nn.Linear(num_filters[3] * math.ceil(features_per_frame * (0.5 ** (len(layers) - 1))) * pooling_size, emb_size)
self.bn2 = nn.BatchNorm1d(emb_size)
for m in self.modules():
if isinstance(m, nn.Conv2d):
nn.init.kaiming_normal_(m.weight, mode='fan_out', nonlinearity='relu')
elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
nn.init.constant_(m.weight, 1)
nn.init.constant_(m.bias, 0)
# Zero-initialize the last BN in each residual branch,
# so that the residual branch starts with zeros, and each residual block behaves like an identity.
# This improves the model by 0.2~0.3% according to https://arxiv.org/abs/1706.02677
if zero_init_residual:
for m in self.modules():
if isinstance(m, BasicBlock):
nn.init.constant_(m.bn2.weight, 0)
def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
norm_layer = self._norm_layer
downsample = None
previous_dilation = self.dilation
if dilate:
self.dilation *= stride
stride = 1
if stride != 1 or self.inplanes != planes * block.expansion:
downsample = nn.Sequential(
conv1x1(self.inplanes, planes * block.expansion, stride),
norm_layer(planes * block.expansion),
)
layers = []
layers.append(block(self.inplanes, planes, stride, downsample, self.groups,
self.base_width, previous_dilation, norm_layer))
self.inplanes = planes * block.expansion
for _ in range(1, blocks):
layers.append(block(self.inplanes, planes, groups=self.groups,
base_width=self.base_width, dilation=self.dilation,
norm_layer=norm_layer))
return nn.Sequential(*layers)
def _forward_impl(self, x):
x = self.conv1(x)
x = self.bn1(x)
x = self.relu(x)
x = self.layer1(x)
x = self.layer2(x)
x = self.layer3(x)
x = self.layer4(x)
x = x.transpose(2, 3)
x = x.flatten(1, 2)
x = pooling(x, self.pooling_mode)
x = self.fc(x)
x = self.bn2(x)
return x
def forward(self, x):
return self._forward_impl(x)
def resnet34(args, **kwargs):
"""
A small funtion that initialize a resnet 34.
Usage:
model = resnet34()
"""
model = ResNet(BasicBlock,
args.layers,
args.num_filters,
args.emb_size,
args.pooling,
args.features_per_frame,
args.zero_init_residual,
**kwargs)
return model
def pooling(x, mode='statistical'):
"""
function that implement different kind of pooling
"""
if mode == 'min':
x, _ = x.min(dim=2)
elif mode == 'max':
x, _ = x.min(dim=2)
elif mode == 'mean':
x = x.mean(dim=2)
elif mode == 'std':
x = x.std(dim=2)
elif mode == 'statistical':
means = x.mean(dim=2)
stds = x.std(dim=2)
x = torch.cat([means, stds], dim=1)
elif mode == 'std_kurtosis':
stds = x.std(dim=2)
kurtoses = kurtosis(x.detach().cpu(), axis=2, fisher=False)
kurtoses = torch.from_numpy(kurtoses)
kurtoses = kurtoses.to(stds.device)
x = torch.cat([stds, kurtoses], dim=1)
elif mode == 'std_skew':
stds = x.std(dim=2)
skews = skew(x.detach().cpu(), axis=2)
skews = torch.from_numpy(skews)
skews = skews.to(stds.device)
x = torch.cat([stds, skews], dim=1)
else:
raise ValueError('Unexpected pooling mode.')
return x
class NeuralNetAMSM(nn.Module):
"""
The classifier Neural Network
AMSM stands for : Arc Margin SoftMax
"""
def __init__(self, num_features, num_classes, s=30.0, m=0.4):
super(NeuralNetAMSM, self).__init__()
self.num_features = num_features
self.n_classes = num_classes
self.s = s
self.m = m
self.W = nn.Parameter(torch.FloatTensor(num_classes, num_features))
self.reset_parameters()
def reset_parameters(self):
nn.init.xavier_uniform_(self.W)
def forward(self, input, label=None):
# normalize features
x = F.normalize(input)
# normalize weights
W = F.normalize(self.W)
# dot product
logits = F.linear(x, W)
if label is None:
return logits
# add margin
target_logits = logits - self.m
one_hot = torch.zeros_like(logits)
one_hot.scatter_(1, label.view(-1, 1).long(), 1)
output = logits * (1 - one_hot) + target_logits * one_hot
# feature re-scale
output *= self.s
return output