forked from almazan/watts
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathprepare_data_learning.m
30 lines (25 loc) · 1.03 KB
/
prepare_data_learning.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
function data = prepare_data_learning(opts,data)
% Splits the words in the different subsets (train, validation and test)
% opts.fileSets contains the indexes of the subset that each word belongs
load(opts.fileSets,'idxTrain','idxValidation','idxTest');
data.idxTrain = idxTrain;
data.idxValidation = idxValidation;
data.idxTest = idxTest;
% Words, labels, PHOCS and classes indexes are splitted in the different
% subsets according to the indexes
data.wordsTr = data.words(idxTrain);
data.numWTr = length(data.wordsTr);
data.wordsVa = data.words(idxValidation);
data.numWVa = length(data.wordsVa);
data.wordsTe = data.words(idxTest);
data.numWTe = length(data.wordsTe);
data.labelsTr = {data.wordsTr(:).gttext};
data.labelsVa = {data.wordsVa(:).gttext};
data.labelsTe = {data.wordsTe(:).gttext};
data.wordClsTr = [data.wordsTr(:).class];
data.wordClsVa = [data.wordsVa(:).class];
data.wordClsTe = [data.wordsTe(:).class];
data.phocsTr = data.phocs(:,idxTrain);
data.phocsVa = data.phocs(:,idxValidation);
data.phocsTe = data.phocs(:,idxTest);
end