-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata.py
258 lines (194 loc) · 9.11 KB
/
data.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
#######################################################
### Code for observational data loading ###
### by Manuel A. Buen-Abad, 2020 ###
### and Chen Sun, 2020 ###
#######################################################
import os
import random
import numpy as np
import scipy.linalg as la
from numpy import pi, sqrt, log, log10, exp, power
# numexpr, as stated in Pantheon code that it's much faster than numpy
try:
import numexpr as ne
except ImportError:
raise Exception(
"This likelihood has intensive array manipulations. You "
"have to install the numexpr Python package. Please type:\n"
"(sudo) pip install numexpr --user")
# CONSTANTS:
_rads_over_arcsec_ = (2.*pi)/(360.*60.*60.) # [rad/arcsec]
##########################
# auxiliary functions
##########################
def read_matrix(path):
"""
extract the matrix from the path
This routine uses the blazing fast pandas library (0.10 seconds to load
a 740x740 matrix). If not installed, it uses a custom routine that is
twice as slow (but still 4 times faster than the straightforward
numpy.loadtxt method.)
This function is adopted from MontePython
.. note::
the length of the matrix is stored on the first line... then it has
to be unwrapped. The pandas routine read_table understands this
immediatly, though.
"""
from pandas import read_table
# path = os.path.join(self.data_directory, path)
# The first line should contain the length.
with open(path, 'r') as text:
length = int(text.readline())
# Note that this function does not require to skiprows, as it
# understands the convention of writing the length in the first
# line
matrix = read_table(path).as_matrix().reshape((length, length))
return matrix
##########################
# data loading functions
##########################
def load_shoes(dir_lkl, anchor_lkl, aB, aBsig):
"""
Load SH0ES.
return: Anchor_SN, Anchor_SNsig, Anchor_Ceph, Anchor_Cephsig, Anchor_M, Anchor_Msig, aB, aBsig
"""
(Anchor_SN, Anchor_SNsig, Anchor_Ceph,
Anchor_Cephsig, Anchor_M, Anchor_Msig) = np.loadtxt(os.path.join(dir_lkl, anchor_lkl),
skiprows=2,
delimiter=",")
Anchor_SN = Anchor_SN - 5 * aB # this is the measured m_SN
return (Anchor_SN, Anchor_SNsig, Anchor_Ceph, Anchor_Cephsig, Anchor_M, Anchor_Msig, aB, aBsig)
def load_pantheon(dir_lkl, Pantheon_lkl, Pantheon_covmat, Pantheon_subset, verbose):
"""
Load Pantheon.
return: PAN_lkl, PAN_cov
"""
PAN_lkl = np.loadtxt(os.path.join(dir_lkl, Pantheon_lkl),
skiprows=1,
usecols=(1, 4, 5))
C00 = read_matrix(os.path.join(dir_lkl, Pantheon_covmat))
# choose a subset of covmat and lkl
# covmat
full_length = len(PAN_lkl)
subset_length = int(Pantheon_subset)
del_length = full_length - subset_length
del_idx = np.array(random.sample(np.arange(full_length), del_length))
C00 = np.delete(C00, del_idx, axis=1)
C00 = np.delete(C00, del_idx, axis=0)
# lkl
PAN_lkl = np.delete(PAN_lkl, del_idx, axis=0)
if verbose >= 2:
print('full_length=%s' % full_length)
print('subset_length=%s' % subset_length)
print('del_length=%s' % del_length)
print('C00.shape=%s' % str(C00.shape))
print('PAN_lkl.shape=%s' % str(PAN_lkl.shape))
# end of choice
PAN_cov = ne.evaluate("C00")
PAN_cov += np.diag(PAN_lkl[:, 2]**2)
PAN_cov = la.cholesky(PAN_cov, lower=True, overwrite_a=True)
return (PAN_lkl, PAN_cov)
def load_boss_dr12(dir_lkl, BOSSDR12_rsfid, BOSSDR12_meas, BOSSDR12_covmat):
"""
Load BOSS DR12.
return: BOSS_rsfid, BOSS_meas_z, BOSS_meas_dM, BOSS_meas_Hz, BOSS_cov, BOSS_icov
"""
BOSS_rsfid = BOSSDR12_rsfid
BOSS_meas_z = np.array([], 'float64')
BOSS_meas_dM = np.array([], 'float64')
BOSS_meas_Hz = np.array([], 'float64')
with open(os.path.join(dir_lkl, BOSSDR12_meas)) as f:
for line in f:
words = line.split()
if words[0] != '#':
if words[1] == 'dM(rsfid/rs)':
BOSS_meas_z = np.append(BOSS_meas_z, float(words[0]))
BOSS_meas_dM = np.append(BOSS_meas_dM, float(words[2]))
elif words[1] == 'Hz(rs/rsfid)':
BOSS_meas_Hz = np.append(BOSS_meas_Hz, float(words[2]))
BOSS_cov = np.loadtxt(os.path.join(dir_lkl, BOSSDR12_covmat))
BOSS_icov = np.linalg.inv(BOSS_cov)
return (BOSS_rsfid, BOSS_meas_z, BOSS_meas_dM, BOSS_meas_Hz, BOSS_cov, BOSS_icov)
def load_bao_lowz(dir_lkl, BAOlowz_lkl):
"""
Load BAOlowz (6DFs + DR7 MGS)
return: BAOlowz_meas_exp, BAOlowz_meas_z, BAOlowz_meas_rs_dV, BAOlowz_meas_sigma, BAOlowz_meas_type
"""
BAOlowz_meas_exp = np.array([])
BAOlowz_meas_z = np.array([], 'float64')
BAOlowz_meas_rs_dV = np.array([], 'float64') # rs/dV or dV/rs
BAOlowz_meas_sigma = np.array([], 'float64')
BAOlowz_meas_type = np.array([], 'int') # type 3, dV/rs, type 7 rs/dV
with open(os.path.join(dir_lkl, BAOlowz_lkl)) as f:
for line in f:
words = line.split()
if line[0] != '#':
BAOlowz_meas_exp = np.append(BAOlowz_meas_exp, words[0])
BAOlowz_meas_z = np.append(BAOlowz_meas_z, float(words[1]))
BAOlowz_meas_rs_dV = np.append(
BAOlowz_meas_rs_dV, float(words[2]))
BAOlowz_meas_sigma = np.append(
BAOlowz_meas_sigma, float(words[3]))
BAOlowz_meas_type = np.append(BAOlowz_meas_type, int(words[4]))
return (BAOlowz_meas_exp, BAOlowz_meas_z, BAOlowz_meas_rs_dV, BAOlowz_meas_sigma, BAOlowz_meas_type)
def load_clusters(dir_lkl, flg_load_err=False):
"""
Load clusters ADD.
return: names, z_cls, DA_cls, err_cls, asymm_cls, ne0_cls, beta_cls, rc_out_cls, f_cls, rc_in_cls, Rvir_cls
"""
# from Bonamente et al., astro-ph/0512349, Table 3.
stat = np.array([0.01, 0.15, 0.08, 0.08, 0.01, 0.02])
sys_p = np.array([0.03, 0.05, 0.075, 0.08])
sys_n = np.array([0.05, 0.075, 0.08])
names = []
z_cls = np.array([])
DA_cls = np.array([])
p_err_cls = np.array([])
n_err_cls = np.array([])
ne0_cls = np.array([])
beta_cls = np.array([])
rc_out_cls = np.array([])
f_cls = np.array([])
rc_in_cls = np.array([])
ne0_err_cls = np.array([])
beta_err_cls = np.array([])
rc_out_err_cls = np.array([])
f_err_cls = np.array([])
rc_in_err_cls = np.array([])
Rvir_cls = np.array([])
with open(dir_lkl+'add.txt', 'r') as filein:
for i, line in enumerate(filein):
if line.strip() and line.find('#') == -1:
this_line = line.split()
names.append(this_line[0]+' '+this_line[1])
z_cls = np.append(z_cls, float(this_line[2]))
DA_cls = np.append(DA_cls, float(this_line[3]))
p_err_cls = np.append(p_err_cls, float(this_line[4]))
n_err_cls = np.append(n_err_cls, float(this_line[5]))
ne0_cls = np.append(ne0_cls, float(this_line[6]))
ne0_err_cls = np.append(ne0_cls, float(this_line[7]))
beta_cls = np.append(beta_cls, float(this_line[8]))
beta_err_cls = np.append(beta_cls, float(this_line[9]))
rc_out_cls = np.append(rc_out_cls, float(this_line[10]))
rc_out_err_cls = np.append(rc_out_cls, float(this_line[11]))
f_cls = np.append(f_cls, float(this_line[12]))
f_err_cls = np.append(f_cls, float(this_line[13]))
rc_in_cls = np.append(rc_in_cls, float(this_line[14]))
rc_in_err_cls = np.append(rc_in_cls, float(this_line[15]))
Rvir_cls = np.append(Rvir_cls, float(this_line[20]))
# converting from arcsec to kpc
rc_out_cls = (DA_cls*1.e3)*(_rads_over_arcsec_*rc_out_cls)
# converting from arcsec to kpc
rc_in_cls = (DA_cls*1.e3)*(_rads_over_arcsec_*rc_in_cls)
# converting from arcsec to kpc
Rvir_cls = (DA_cls*1.e3)*(_rads_over_arcsec_*Rvir_cls)
sig_p = sqrt(DA_cls*DA_cls*((stat**2.).sum() +
sys_p.sum()**2.) + p_err_cls**2.)
sig_m = sqrt(DA_cls*DA_cls*((stat**2.).sum() +
sys_n.sum()**2.) + n_err_cls**2.)
err_cls = (sig_p + sig_m)/2.
asymm_cls = (sig_p - sig_m)/(sig_p + sig_m)
if not flg_load_err:
return (names, z_cls, DA_cls, err_cls, asymm_cls, ne0_cls, beta_cls, rc_out_cls, f_cls, rc_in_cls, Rvir_cls)
else:
return (names, z_cls, DA_cls, err_cls, asymm_cls, ne0_cls, beta_cls, rc_out_cls, f_cls, rc_in_cls, Rvir_cls, ne0_err_cls, beta_err_cls, rc_out_err_cls, f_err_cls, rc_in_err_cls)