-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathproject_search.py
91 lines (80 loc) · 2.92 KB
/
project_search.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
#!/usr/bin/env python3
import geohash2, sqlite3, csv
from difflib import SequenceMatcher
def date_to_days_recip(dat, curr):
dat_lst = dat.split('-')
curr_lst = curr.split('-')
year_days = (int(dat_lst[0])-1900)*365.25-(int(curr_lst[0])-1900)*365.25
month_days = int(dat_lst[1])*30.25-int(curr_lst[1])*30.25
days_days = int(dat_lst[2])-int(curr_lst[2])
return(1/(year_days+month_days+days_days))
def evaluate(inp_str):
'''The current idea is to compare the geohashed strings to what I already have
and to use a weighted average based of the ratio the geohashed comparisons
and also how close the date it to the date of the current date.
'''
with open(inp_str, encoding="MAC_ROMAN") as house_data: # reading in the data from the csv
my_re = csv.reader(house_data, delimiter=',')
rows = []
Rows = []
err_lst = []
for row in my_re:
rows.append(row)
for row in range(1, len(rows)):
try:
Rows.append(
[
# float(rows[row][0].split(',')[0].strip()), # lat
# float(rows[row][0].split(',')[1].strip()), # lon
(geohash2.encode(float(rows[row][0].split(',')[0].strip()), float(
rows[row][0].split(',')[1].strip()), precision=100)), # geohash
(rows[row][1]), # address
(rows[row][2]), # county
# date YYYY-MM-DD
('-'.join(rows[row][3].split('/')[::-1])),
float(rows[row][4]) # house price
]
)
except ValueError as e:
err_lst.append(row)
# making/connecting to the database file
connec = sqlite3.connect('house_database_geohashed.db')
c = connec.cursor() # generating a cursor to the database file
data = list(c.execute("SELECT geohash, sell_date, price FROM house_data"))
for i in range(len(data)):
geohashed_string = data[i][0]
inp_date = data[i][1]
weighted_dict1 = {}
weighted_dict2 = {}
for e in range(len(data)):
if (data[e][1] > inp_date) & (data[e][0][:5] == geohashed_string[:5]):
weighted_dict1[SequenceMatcher(
None, data[e][0], geohashed_string).ratio()] = data[e][2]
weighted_dict2[date_to_days_recip(
data[e][1], inp_date)] = data[e][2]
# print(weighted_dict2)
em_dict1 = False
em_dict2 = False
if weighted_dict1:
val1 = int(sum([a*b for a, b in weighted_dict1.items()])) / \
(len(weighted_dict1) *
(sum([a for a, _ in weighted_dict1.items()]))) # Weighted average by proximity.
em_dict1 = True
if weighted_dict2:
val2 = int(sum([a*b for a, b in weighted_dict2.items()])) / \
(len(weighted_dict2) *
(sum([abs(a) for a, _ in weighted_dict2.items()]))) # Weighted average by date.
em_dict2 = True
# print(val2,'\n')
a = 3
b = 20
if em_dict1 and em_dict2:
print(val1*a+val2*b)
elif em_dict1:
print(val1*a)
elif em_dict2:
print(val2*b)
else:
print("Empty Dict", "\n")
inp_var = input("Please give the path to the csv to predict: ")
evaluate(inp_var)