-
Notifications
You must be signed in to change notification settings - Fork 23
/
Copy pathvalidation_metric.py
421 lines (368 loc) · 14.8 KB
/
validation_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
import torch
import torch.nn as nn
import numpy as np
from sklearn.metrics import average_precision_score
import misc
class IoU(nn.Module):
"""
This class implements the IoU for validation. Not gradients supported.
"""
def __init__(self, threshold: float = 0.5) -> None:
"""
Constructor method
:param threshold: (float) Threshold to be applied
"""
# Call super constructor
super(IoU, self).__init__()
# Save parameter
self.threshold = threshold
@torch.no_grad()
def forward(self, prediction: torch.Tensor, label: torch.Tensor, **kwargs) -> torch.Tensor:
"""
Forward pass computes the IoU score
:param prediction: (torch.Tensor) Prediction of all shapes
:param label: (torch.Tensor) Label of all shapes
:param kwargs: Key word arguments (not used)
:return: (torch.Tensor) IoU score
"""
# Apply threshold to prediction
prediction = (prediction > self.threshold).float()
# Compute intersection
intersection = ((prediction + label) == 2.0).sum()
# Compute union
union = ((prediction + label) >= 1.0).sum()
# Compute iou
return intersection / (union + 1e-10)
class CellIoU(nn.Module):
"""
This class implements the IoU metric for cell instances.
"""
def __init__(self, threshold: float = 0.5) -> None:
"""
Constructor method
:param threshold: (float) Threshold to be applied
"""
# Call super constructor
super(CellIoU, self).__init__()
# Save parameter
self.threshold = threshold
def forward(self, prediction: torch.Tensor, label: torch.Tensor, class_label: torch.Tensor,
**kwargs) -> torch.Tensor:
"""
Forward pass
:param prediction: (torch.Tensor) Instance segmentation prediction
:param label: (torch.Tensor) Instance segmentation label
:param class_label: (torch.Tensor) Class label of each instance segmentation map
:param kwargs: Key word arguments (not used)
:return: (torch.Tensor) Mean cell IoU metric
"""
# Apply threshold to prediction
prediction = (prediction > self.threshold).float()
# Get segmentation maps belonging to the cell class
indexes = np.argwhere(class_label.cpu().numpy() >= 2)[:, 0]
# Case if no cells are present
if indexes.shape == (0,):
return torch.tensor(np.nan)
prediction = prediction[indexes].sum(dim=0)
label = label[indexes].sum(dim=0)
# Compute intersection
intersection = ((prediction + label) == 2.0).sum(dim=(-2, -1))
# Compute union
union = ((prediction + label) >= 1.0).sum(dim=(-2, -1))
# Compute iou
return intersection / (union + 1e-10)
class MIoU(nn.Module):
"""
This class implements the mean IoU for validation. Not gradients supported.
"""
def __init__(self, threshold: float = 0.5) -> None:
"""
Constructor method
:param threshold: (float) Threshold to be applied
"""
# Call super constructor
super(MIoU, self).__init__()
# Save parameter
self.threshold = threshold
@torch.no_grad()
def forward(self, prediction: torch.Tensor, label: torch.Tensor, **kwargs) -> torch.Tensor:
"""
Forward pass computes the IoU score
:param prediction: (torch.Tensor) Prediction of shape [..., height, width]
:param label: (torch.Tensor) Label of shape [..., height, width]
:param kwargs: Key word arguments (not used)
:return: (torch.Tensor) IoU score
"""
# Apply threshold to prediction
prediction = (prediction > self.threshold).float()
# Compute intersection
intersection = ((prediction + label) == 2.0).sum(dim=(-2, -1))
# Compute union
union = ((prediction + label) >= 1.0).sum(dim=(-2, -1))
# Compute iou
return (intersection / (union + 1e-10)).mean()
class Dice(nn.Module):
"""
This class implements the dice score for validation. No gradients supported.
"""
def __init__(self, threshold: float = 0.5) -> None:
"""
Constructor method
:param threshold: (float) Threshold to be applied
"""
# Call super constructor
super(Dice, self).__init__()
# Save parameter
self.threshold = threshold
@torch.no_grad()
def forward(self, prediction: torch.Tensor, label: torch.Tensor, **kwargs) -> torch.Tensor:
"""
Forward pass computes the dice coefficient
:param prediction: (torch.Tensor) Prediction
:param label: (torch.Tensor) Label
:param kwargs: Key word arguments (not used)
:return: (torch.Tensor) Dice coefficient
"""
# Apply threshold to prediction
prediction = (prediction > self.threshold).float()
# Compute intersection
intersection = ((prediction + label) == 2.0).sum()
# Compute dice score
return (2 * intersection) / (prediction.sum() + label.sum() + 1e-10)
class ClassificationAccuracy(nn.Module):
"""
This class implements the classification accuracy computation. No gradients supported.
"""
def __init__(self, threshold: float = 0.5) -> None:
"""
Constructor method
:param threshold: (float) Threshold to be applied
"""
# Call super constructor
super(ClassificationAccuracy, self).__init__()
# Save parameter
self.threshold = threshold
@torch.no_grad()
def forward(self, prediction: torch.Tensor, label: torch.Tensor) -> torch.Tensor:
"""
Forward pass computes the accuracy score
:param prediction: (torch.Tensor) Prediction
:param label: (torch.Tensor) Label
:return: (torch.Tensor) Accuracy
"""
# Calc correct classified elements
correct_classified_elements = (prediction == label).float().sum()
# Calc accuracy
return correct_classified_elements / prediction.numel()
class InstancesAccuracy(nn.Module):
"""
This class implements the accuracy computation. No gradients supported.
"""
def __init__(self, threshold: float = 0.5) -> None:
"""
Constructor method
:param threshold: (float) Threshold to be applied
"""
# Call super constructor
super(InstancesAccuracy, self).__init__()
# Save parameter
self.threshold = threshold
@torch.no_grad()
def forward(self, prediction: torch.Tensor, label: torch.Tensor, **kwargs) -> torch.Tensor:
"""
Forward pass computes the accuracy score
:param prediction: (torch.Tensor) Prediction
:param label: (torch.Tensor) Label
:param kwargs: Key word arguments (not used)
:return: (torch.Tensor) Accuracy
"""
# Apply threshold to prediction
prediction = (prediction > self.threshold).float()
# Calc correct classified elements
correct_classified_elements = (prediction == label).float().sum()
# Calc accuracy
return correct_classified_elements / prediction.numel()
class Accuracy(nn.Module):
"""
This class implements the accuracy computation. No gradients supported.
"""
def __init__(self, threshold: float = 0.5) -> None:
"""
Constructor method
:param threshold: (float) Threshold to be applied
"""
# Call super constructor
super(Accuracy, self).__init__()
# Save parameter
self.threshold = threshold
@torch.no_grad()
def forward(self, prediction: torch.Tensor, label: torch.Tensor, **kwargs) -> torch.Tensor:
"""
Forward pass computes the accuracy score
:param prediction: (torch.Tensor) Prediction
:param label: (torch.Tensor) Label
:param kwargs: Key word arguments (not used)
:return: (torch.Tensor) Accuracy
"""
# Apply threshold to prediction
prediction = (prediction > self.threshold).float()
# Get instance map
prediction = (prediction
* torch.arange(1, prediction.shape[0] + 1, device=prediction.device).view(-1, 1, 1)).sum(dim=0)
label = (label * torch.arange(1, label.shape[0] + 1, device=label.device).view(-1, 1, 1)).sum(dim=0)
# Calc correct classified elements
correct_classified_elements = (prediction == label).float().sum()
# Calc accuracy
return correct_classified_elements / prediction.numel()
class Recall(nn.Module):
"""
This class implements the recall score. No gradients supported.
"""
def __init__(self, threshold: float = 0.5) -> None:
"""
Constructor method
:param threshold: (float) Threshold to be applied
"""
# Call super constructor
super(Recall, self).__init__()
# Save parameter
self.threshold = threshold
@torch.no_grad()
def forward(self, prediction: torch.Tensor, label: torch.Tensor, **kwargs) -> torch.Tensor:
"""
Forward pass computes the recall score
:param prediction: (torch.Tensor) Prediction
:param label: (torch.Tensor) Label
:param kwargs: Key word arguments (not used)
:return: (torch.Tensor) Recall score
"""
# Apply threshold to prediction
prediction = (prediction > self.threshold).float()
# Calc true positive elements
true_positive_elements = (((prediction == 1.0).float() + (label == 1.0)) == 2.0).float()
# Calc false negative elements
false_negative_elements = (((prediction == 0.0).float() + (label == 1.0)) == 2.0).float()
# Calc recall scale
return true_positive_elements.sum() / ((true_positive_elements + false_negative_elements).sum() + 1e-10)
class Precision(nn.Module):
"""
This class implements the precision score. No gradients supported.
"""
def __init__(self, threshold: float = 0.5) -> None:
"""
Constructor method
:param threshold: (float) Threshold to be applied
"""
# Call super constructor
super(Precision, self).__init__()
# Save parameter
self.threshold = threshold
@torch.no_grad()
def forward(self, prediction: torch.Tensor, label: torch.Tensor, **kwargs) -> torch.Tensor:
"""
Forward pass computes the precision score
:param prediction: (torch.Tensor) Prediction
:param label: (torch.Tensor) Label
:param kwargs: Key word arguments (not used)
:return: (torch.Tensor) Precision score
"""
# Apply threshold to prediction
prediction = (prediction > self.threshold).float()
# Calc true positive elements
true_positive_elements = (((prediction == 1.0).float() + (label == 1.0)) == 2.0).float()
# Calc false positive elements
false_positive_elements = (((prediction == 1.0).float() + (label == 0.0)) == 2.0).float()
# Calc precision
return true_positive_elements.sum() / ((true_positive_elements + false_positive_elements).sum() + 1e-10)
class F1(nn.Module):
"""
This class implements the F1 score. No gradients supported.
"""
def __init__(self, threshold: float = 0.5) -> None:
"""
Constructor method
:param threshold: (float) Threshold to be applied
"""
# Call super constructor
super(F1, self).__init__()
# Init recall and precision module
self.recall = Recall(threshold=threshold)
self.precision = Precision(threshold=threshold)
@torch.no_grad()
def forward(self, prediction: torch.Tensor, label: torch.Tensor, **kwargs) -> torch.Tensor:
"""
Forward pass computes the F1 score
:param prediction: (torch.Tensor) Prediction
:param label: (torch.Tensor) Label
:param kwargs: Key word arguments (not used)
:return: (torch.Tensor) F1 score
"""
# Calc recall
recall = self.recall(prediction, label)
# Calc precision
precision = self.precision(prediction, label)
# Calc F1 score
return (2.0 * recall * precision) / (recall + precision + 1e-10)
class BoundingBoxIoU(nn.Module):
"""
This class implements the bounding box IoU.
"""
def __init__(self) -> None:
"""
Constructor method
"""
# Call super constructor
super(BoundingBoxIoU, self).__init__()
@torch.no_grad()
def forward(self, prediction: torch.Tensor, label: torch.Tensor) -> torch.Tensor:
"""
Forward pass computes the bounding box iou score
:param prediction: (torch.Tensor) Bounding box predictions [batch size, instances, 4 (x0, y0, x1, y1)]
:param label: (torch.Tensor) Bounding box labels in the format [batch size, instances, 4 (x0, y0, x1, y1)]
:return: (torch.Tensor) Bounding box iou
"""
return misc.giou(bounding_box_1=prediction, bounding_box_2=label, return_iou=True)[1].diagonal().mean()
class BoundingBoxGIoU(nn.Module):
"""
This class implements the bounding box IoU.
"""
def __init__(self) -> None:
"""
Constructor method
"""
# Call super constructor
super(BoundingBoxGIoU, self).__init__()
@torch.no_grad()
def forward(self, prediction: torch.Tensor, label: torch.Tensor) -> torch.Tensor:
"""
Forward pass computes the bounding box iou score
:param prediction: (torch.Tensor) Bounding box predictions [batch size, instances, 4 (x0, y0, x1, y1)]
:param label: (torch.Tensor) Bounding box labels in the format [batch size, instances, 4 (x0, y0, x1, y1)]
:return: (torch.Tensor) Bounding box iou
"""
return misc.giou(bounding_box_1=prediction, bounding_box_2=label).diagonal().mean()
class MeanAveragePrecision(nn.Module):
"""
This class implements the mean average precision metric for instance segmentation.
"""
def __init__(self) -> None:
"""
Constructor method
"""
# Call super constructor
super(MeanAveragePrecision, self).__init__()
@torch.no_grad()
def forward(self, prediction: torch.Tensor, label: torch.Tensor, **kwargs) -> torch.Tensor:
"""
Forward pass computes the accuracy score
:param prediction: (torch.Tensor) Prediction
:param label: (torch.Tensor) Label
:param kwargs: Key word arguments (not used)
:return: (torch.Tensor) Accuracy
"""
# Flatten tensors and convert to numpy
prediction_flatten = prediction.detach().cpu().view(-1).numpy()
label_flatten = label.detach().cpu().view(-1).numpy()
# Calc accuracy
return torch.tensor(average_precision_score(label_flatten, prediction_flatten, average="macro"),
dtype=torch.float, device=label.device)