forked from jcjohnson/fast-neural-style
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.lua
328 lines (274 loc) · 9.91 KB
/
train.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
require 'torch'
require 'optim'
require 'image'
require 'fast_neural_style.DataLoader'
require 'fast_neural_style.PerceptualCriterion'
local utils = require 'fast_neural_style.utils'
local preprocess = require 'fast_neural_style.preprocess'
local models = require 'fast_neural_style.models'
local cmd = torch.CmdLine()
--[[
Train a feedforward style transfer model
--]]
-- Generic options
cmd:option('-arch', 'c9s1-32,d64,d128,R128,R128,R128,R128,R128,u64,u32,c9s1-3')
cmd:option('-use_instance_norm', 1)
cmd:option('-task', 'style', 'style|upsample')
cmd:option('-h5_file', 'data/ms-coco-256.h5')
cmd:option('-padding_type', 'reflect-start')
cmd:option('-tanh_constant', 150)
cmd:option('-preprocessing', 'vgg')
cmd:option('-resume_from_checkpoint', '')
-- Generic loss function options
cmd:option('-pixel_loss_type', 'L2', 'L2|L1|SmoothL1')
cmd:option('-pixel_loss_weight', 0.0)
cmd:option('-percep_loss_weight', 1.0)
cmd:option('-tv_strength', 1e-6)
-- Options for feature reconstruction loss
cmd:option('-content_weights', '1.0')
cmd:option('-content_layers', '16')
cmd:option('-loss_network', 'models/vgg16.t7')
-- Options for style reconstruction loss
cmd:option('-style_image', 'images/styles/candy.jpg')
cmd:option('-style_image_size', 256)
cmd:option('-style_weights', '5.0')
cmd:option('-style_layers', '4,9,16,23')
cmd:option('-style_target_type', 'gram', 'gram|mean')
-- Upsampling options
cmd:option('-upsample_factor', 4)
-- Optimization
cmd:option('-num_iterations', 40000)
cmd:option('-max_train', -1)
cmd:option('-batch_size', 4)
cmd:option('-learning_rate', 1e-3)
cmd:option('-lr_decay_every', -1)
cmd:option('-lr_decay_factor', 0.5)
cmd:option('-weight_decay', 0)
-- Checkpointing
cmd:option('-checkpoint_name', 'checkpoint')
cmd:option('-checkpoint_every', 1000)
cmd:option('-num_val_batches', 10)
-- Backend options
cmd:option('-gpu', 0)
cmd:option('-use_cudnn', 1)
cmd:option('-backend', 'cuda', 'cuda|opencl')
function main()
local opt = cmd:parse(arg)
-- Parse layer strings and weights
opt.content_layers, opt.content_weights =
utils.parse_layers(opt.content_layers, opt.content_weights)
opt.style_layers, opt.style_weights =
utils.parse_layers(opt.style_layers, opt.style_weights)
-- Figure out preprocessing
if not preprocess[opt.preprocessing] then
local msg = 'invalid -preprocessing "%s"; must be "vgg" or "resnet"'
error(string.format(msg, opt.preprocessing))
end
preprocess = preprocess[opt.preprocessing]
-- Figure out the backend
local dtype, use_cudnn = utils.setup_gpu(opt.gpu, opt.backend, opt.use_cudnn == 1)
-- Build the model
local model = nil
if opt.resume_from_checkpoint ~= '' then
print('Loading checkpoint from ' .. opt.resume_from_checkpoint)
model = torch.load(opt.resume_from_checkpoint).model:type(dtype)
else
print('Initializing model from scratch')
model = models.build_model(opt):type(dtype)
end
if use_cudnn then cudnn.convert(model, cudnn) end
model:training()
print(model)
-- Set up the pixel loss function
local pixel_crit
if opt.pixel_loss_weight > 0 then
if opt.pixel_loss_type == 'L2' then
pixel_crit = nn.MSECriterion():type(dtype)
elseif opt.pixel_loss_type == 'L1' then
pixel_crit = nn.AbsCriterion():type(dtype)
elseif opt.pixel_loss_type == 'SmoothL1' then
pixel_crit = nn.SmoothL1Criterion():type(dtype)
end
end
-- Set up the perceptual loss function
local percep_crit
if opt.percep_loss_weight > 0 then
local loss_net = torch.load(opt.loss_network)
local crit_args = {
cnn = loss_net,
style_layers = opt.style_layers,
style_weights = opt.style_weights,
content_layers = opt.content_layers,
content_weights = opt.content_weights,
agg_type = opt.style_target_type,
}
percep_crit = nn.PerceptualCriterion(crit_args):type(dtype)
if opt.task == 'style' then
-- Load the style image and set it
local style_image = image.load(opt.style_image, 3, 'float')
style_image = image.scale(style_image, opt.style_image_size)
local H, W = style_image:size(2), style_image:size(3)
style_image = preprocess.preprocess(style_image:view(1, 3, H, W))
percep_crit:setStyleTarget(style_image:type(dtype))
end
end
local loader = DataLoader(opt)
local params, grad_params = model:getParameters()
local function shave_y(x, y, out)
if opt.padding_type == 'none' then
local H, W = x:size(3), x:size(4)
local HH, WW = out:size(3), out:size(4)
local xs = (H - HH) / 2
local ys = (W - WW) / 2
return y[{{}, {}, {xs + 1, H - xs}, {ys + 1, W - ys}}]
else
return y
end
end
local function f(x)
assert(x == params)
grad_params:zero()
local x, y = loader:getBatch('train')
x, y = x:type(dtype), y:type(dtype)
-- Run model forward
local out = model:forward(x)
local grad_out = nil
-- This is a bit of a hack: if we are using reflect-start padding and the
-- output is not the same size as the input, lazily add reflection padding
-- to the start of the model so the input and output have the same size.
if opt.padding_type == 'reflect-start' and x:size(3) ~= out:size(3) then
local ph = (x:size(3) - out:size(3)) / 2
local pw = (x:size(4) - out:size(4)) / 2
local pad_mod = nn.SpatialReflectionPadding(pw, pw, ph, ph):type(dtype)
model:insert(pad_mod, 1)
out = model:forward(x)
end
y = shave_y(x, y, out)
-- Compute pixel loss and gradient
local pixel_loss = 0
if pixel_crit then
local pixel_loss = pixel_crit:forward(out, y)
pixel_loss = pixel_loss * opt.pixel_loss_weight
local grad_out_pix = pixel_crit:backward(out, y)
if grad_out then
grad_out:add(opt.pixel_loss_weight, grad_out_pix)
else
grad_out_pix:mul(opt.pixel_loss_weight)
grad_out = grad_out_pix
end
end
-- Compute perceptual loss and gradient
local percep_loss = 0
if percep_crit then
local target = {content_target=y}
percep_loss = percep_crit:forward(out, target)
percep_loss = percep_loss * opt.percep_loss_weight
local grad_out_percep = percep_crit:backward(out, target)
if grad_out then
grad_out:add(opt.percep_loss_weight, grad_out_percep)
else
grad_out_percep:mul(opt.percep_loss_weight)
grad_out = grad_out_percep
end
end
local loss = pixel_loss + percep_loss
-- Run model backward
model:backward(x, grad_out)
-- Add regularization
-- grad_params:add(opt.weight_decay, params)
return loss, grad_params
end
local optim_state = {learningRate=opt.learning_rate}
local train_loss_history = {}
local val_loss_history = {}
local val_loss_history_ts = {}
local style_loss_history = nil
if opt.task == 'style' then
style_loss_history = {}
for i, k in ipairs(opt.style_layers) do
style_loss_history[string.format('style-%d', k)] = {}
end
for i, k in ipairs(opt.content_layers) do
style_loss_history[string.format('content-%d', k)] = {}
end
end
local style_weight = opt.style_weight
for t = 1, opt.num_iterations do
local epoch = t / loader.num_minibatches['train']
local _, loss = optim.adam(f, params, optim_state)
table.insert(train_loss_history, loss[1])
if opt.task == 'style' then
for i, k in ipairs(opt.style_layers) do
table.insert(style_loss_history[string.format('style-%d', k)],
percep_crit.style_losses[i])
end
for i, k in ipairs(opt.content_layers) do
table.insert(style_loss_history[string.format('content-%d', k)],
percep_crit.content_losses[i])
end
end
print(string.format('Epoch %f, Iteration %d / %d, loss = %f',
epoch, t, opt.num_iterations, loss[1]), optim_state.learningRate)
if t % opt.checkpoint_every == 0 then
-- Check loss on the validation set
loader:reset('val')
model:evaluate()
local val_loss = 0
print 'Running on validation set ... '
local val_batches = opt.num_val_batches
for j = 1, val_batches do
local x, y = loader:getBatch('val')
x, y = x:type(dtype), y:type(dtype)
local out = model:forward(x)
y = shave_y(x, y, out)
local pixel_loss = 0
if pixel_crit then
pixel_loss = pixel_crit:forward(out, y)
pixel_loss = opt.pixel_loss_weight * pixel_loss
end
local percep_loss = 0
if percep_crit then
percep_loss = percep_crit:forward(out, {content_target=y})
percep_loss = opt.percep_loss_weight * percep_loss
end
val_loss = val_loss + pixel_loss + percep_loss
end
val_loss = val_loss / val_batches
print(string.format('val loss = %f', val_loss))
table.insert(val_loss_history, val_loss)
table.insert(val_loss_history_ts, t)
model:training()
-- Save a JSON checkpoint
local checkpoint = {
opt=opt,
train_loss_history=train_loss_history,
val_loss_history=val_loss_history,
val_loss_history_ts=val_loss_history_ts,
style_loss_history=style_loss_history,
}
local filename = string.format('%s.json', opt.checkpoint_name)
paths.mkdir(paths.dirname(filename))
utils.write_json(filename, checkpoint)
-- Save a torch checkpoint; convert the model to float first
model:clearState()
if use_cudnn then
cudnn.convert(model, nn)
end
model:float()
checkpoint.model = model
filename = string.format('%s.t7', opt.checkpoint_name)
torch.save(filename, checkpoint)
-- Convert the model back
model:type(dtype)
if use_cudnn then
cudnn.convert(model, cudnn)
end
params, grad_params = model:getParameters()
end
if opt.lr_decay_every > 0 and t % opt.lr_decay_every == 0 then
local new_lr = opt.lr_decay_factor * optim_state.learningRate
optim_state = {learningRate = new_lr}
end
end
end
main()