-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathapp.py
530 lines (436 loc) · 18.5 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
"""
App
===
This module serves as the location where the user interface is built,
all of the functions are joined together and used, and the outputs of the
app are encoded
Functions
---------
:output_read_file_status: returns html object with read file status
:output_file_preview_req_num_clusters_req_cluster_method: returns preview
of the uploaded file,
and requests number of clusters/clustering method
:output_req_linkage: requests user to input a linkage method
:output_cluster_settings_req_submit: displays input cluster settings and
requests final submission
:output_cluster_status: displays status of data clustering
:output_cluster_df: stores the clustered df for future use
:output_cluster_figure: returns interactive clustered figure
:output_req_threshold_req_num_draws: requests input of significance threshold
and number of draws (if applicable)
:output_wald_status: displays status of pvalue submission
:output_wald_df: stores df containing wald p-values for future use
:output_wald_preview_clusterpval_status: returns preview of wald table,
and displays cluster status
:output_clusterpval_df: iterates adjusted p-value test over
each significant pairwise cluster comparison and stores df for future use
:output_cluster_pval_preview: returns a preview of the wald and ajusted p-values
side-by-side
"""
import base64
import io
import dash
from dash.dependencies import Input, Output, State
from dash import dcc
from dash import html
import pandas as pd
from sklearn.cluster import AgglomerativeClustering
from sklearn.cluster import KMeans
from cluster_pval import cluster_module
from cluster_pval import helper_module
external_stylesheets = ['https://codepen.io/chriddyp/pen/bWLwgP.css']
available_clustering_methods = ['hierarchical', 'k-means']
available_linkage_methods = ['ward', 'complete', 'average', 'single']
available_pvalue_methods = ['wald']
app = dash.Dash(__name__, external_stylesheets=external_stylesheets)
server = app.server
app.config.suppress_callback_exceptions = True
app.layout = html.Div([
# title
html.Header(
children="Cluster PVal",
style={
'textAlign': 'center',
'background-color': '#4b2e83',
'fontSize': '60px',
'color': 'white',
'padding': '30px',
'font-weight':'bold'
}),
# horizontal line
html.Hr(),
# change subtitle to contain a better explanation of the tool
html.H6(['Tool summary: '], style={'font-weight':'bold'}),
html.Div(''),
html.Div(''),
html.Div(
children="""
Comparing traditional and adjusted p-values when comparing differences of means
between two estimated clusters in a data set.
""",
style={
'textAlign': 'left'
}),
html.Hr(),
html.H6(['Data Import: '], style={'font-weight':'bold'}),
html.Div(''),
html.Div(''),
# file upload
dcc.Upload(
id='upload-data',
children=html.Div([
'Drag and Drop or ',
html.A('Select Files')
]),
style={
'width': '99%',
'height': '60px',
'lineHeight': '60px',
'borderWidth': '1px',
'borderStyle': 'dashed',
'borderRadius': '5px',
'textAlign': 'center',
'margin': '10px'
},
),
# add a line break
html.Br(),
html.Br(),
# request sample orientation
html.Div("Are the samples organized in columns or rows? ", style={'font-weight':'bold'}),
html.Br(),
html.Div("Select option where each row represents one object to be clustered",
style={'font-style': 'italic'}),
dcc.Dropdown(
id='data-orientation',
options=[{'label': i, 'value': i} for i in ['columns', 'rows']],
value='rows'
),
html.Hr(),
# show read file status DONE
html.Div(id='output-read-file-status'),
# once file is read, show file preview and present option for choosing number of clusters DONE
html.Div(id='output-preview-file-req-num-clusters-req-cluster-method'),
# once number of clusters is selected, return option to select clustering method
html.Div(id='output-cluster-settings'),
# once cluster method have been selected, return dropdown for linkages and/or cluster butto DONE
html.Div(id='output-req-linkage'),
# after all clustering/linkage methods have been selected,
# show file clustering status and submit button
html.Div(id='output-cluster-settings-req-submit'),
# after submitting, show file clustering status
html.Div(id='output-cluster-status'),
# store clustered df for future use
dcc.Store(id='output-cluster-df'),
# output clustering figure
html.Div(id='output-cluster-figure'),
# after clustering is complete,
# request sig threshold, num draws (if applicable), and submit button
html.Div(id='output-req-threshold-req-num-draws'),
# after submitting, show wald calculation status
html.Div(id='output-wald-status'),
# store wald df for future use
dcc.Store(id='output-wald-df'),
# show pvalue df with explanation of which pvalues will be recalculated
html.Div(id='output-wald-preview-clusterpval-status'),
# store adjusted pvalue df for future use
dcc.Store(id='output-clusterpval-df'),
# display pvalue table with changed results highlighted with option to download
html.Div(id='output-clusterpval-preview')
])
# return reading file status once file is uploaded DONE
@app.callback(Output('output-read-file-status', 'children'),
Input('upload-data', 'contents'),
State('upload-data', 'filename'))
def output_read_file_status(contents, filename):
"""
Function to return the status of the CSV upload
Parameters:
:param contents: the actual contents of the input file
:param filename: string with pathway and name of file
returns:
display reading file status with filename
"""
if contents is not None:
children = helper_module.read_file_status(filename)
return children
# return file preview and request num clusters and cluster method input DONE
@app.callback(Output('output-preview-file-req-num-clusters-req-cluster-method', 'children'),
Input('output-read-file-status', 'children'),
Input('data-orientation', 'value'),
State('upload-data', 'contents'),
State('upload-data', 'filename'))
def output_preview_file_req_num_clusters_req_cluster_method(status,
orientation, contents, filename):
"""
Function to give a preview of the uploaded dataset on
the dashboard and request input of the user
Parameters:
:param status: the status of reading the file
:param orientation: the orientation of the data as input by the user
:param contents: CSV file with content of input data
:param filename: string the name of file
returns:
preview of data, requests for data info, requests number of clusters,
and requests clustering method
"""
if status is not None:
children = helper_module.file_preview_req_num_clusters_req_cluster_method(orientation,
contents, filename)
return children
# request linkage methods DONE
@app.callback(Output('output-req-linkage', 'children'),
Input('num-clusters', 'value'),
Input('cluster-method', 'value'))
def output_req_linkage(num_clusters, cluster_method):
"""A"""
if num_clusters is not None and cluster_method is not None:
children = helper_module.req_linkage_method(cluster_method)
return children
# once linkage has been selected and/or button has been pressed,
# return clustering status and button to submit DONE
@app.callback(Output('output-cluster-settings-req-submit', 'children'),
Input('linkage-method', 'value'),
State('min-col', 'value'),
State('max-col', 'value'),
State('num-clusters', 'value'),
State('cluster-method', 'value'),
State('upload-data', 'contents'),
State('upload-data', 'filename'))
def output_cluster_settings_req_submit(linkage_method, min_col, max_col,
num_clusters, cluster_method, contents, filename):
"""
Function to ask user for a linkage method
Parameters:
:param linkage_method: the linkage method input by the user
:param min_col: the minimum column with data (input by user)
:param max_col: the maximum column with data (input by user)
:param num_clusters: number of clusters input by user
:param cluster_method: cluster method selected by user
:param contents: the actual contents of the file
:param filename: the name of the file
returns:
a request for user to input linkage method,
or proceeds to next step if
k-means cluster method was selected
"""
if contents is not None and num_clusters is not None:
if cluster_method is not None and linkage_method is not None:
children = helper_module.cluster_settings_req_submit(filename, min_col,
max_col, num_clusters, cluster_method, linkage_method)
return children
# once button has been pressed, return clustering status DONE
@app.callback(Output('output-cluster-status', 'children'),
Input('cluster-button', 'n_clicks'),
State('upload-data', 'filename'))
def output_cluster_status(n_clicks, filename):
"""
Function to return the status of the clustering
Parameters:
:param n_clicks: the number of clicks on the submit button
:param filename: string with pathway and name of file
returns:
display clustering status with filename
"""
if n_clicks > 0:
return html.Div([html.Div("Clustering file: " + str(filename),
style={'font-weight':'bold', 'font-style':'italic'}),
html.Hr()
])
# once button has been pressed, cluster and store data DONE
@app.callback(Output('output-cluster-df', 'data'),
Input('output-cluster-status', 'children'),
State('data-orientation', 'value'),
State('min-col', 'value'),
State('max-col', 'value'),
State('linkage-method', 'value'),
State('num-clusters', 'value'),
State('cluster-method', 'value'),
State('upload-data', 'contents'))
def output_cluster_df(status, orientation, min_col, max_col,
linkage_method, num_clusters, cluster_method, contents):
"""
Function to cluster the data and store the results
Parameters:
:param status: status of the clustering to display
:param orientation: the orientation of the data as input
by the user
:param min_col: the minimum column with data as input by the user
:param max_col: the maximum column with data as input by the user
:param linkage_method: the linkage method as input by the user
:param num_clusters: the number of clusters to from as input
by the user
:param cluster_method: the method of clustering to use as input
by the user
:param contents: the actual contents of the file input by the user
returns:
stores the clustered file for future use
"""
if status is not None:
_, content_string = contents.split(',')
decoded = base64.b64decode(content_string)
data_df = pd.read_csv(io.StringIO(decoded.decode('utf-8')))
if max_col is None:
df_col = data_df.iloc[:,min_col:max_col+1]
else:
df_col = data_df.iloc[:,min_col:]
if orientation == 'columns':
data_df = data_df.transpose()
else:
pass
clustered_df, _, _, _, _ = cluster_module.clustering(df_col,
num_clusters, cluster_method, linkage_method=linkage_method)
return clustered_df.to_json(orient='split')
# once clustering has taken place and df is stored, return clustering figure DONE
@app.callback(Output('output-cluster-figure', 'children'),
Input('output-cluster-df', 'data'))
def output_cluster_figure(clustered_json):
"""
Function to show plot with clustered data
Parameters:
:param clustered_json: dataframe with input data including clusters
returns:
figure with the clustered data
"""
if clustered_json is not None:
clustered_df = pd.read_json(clustered_json, orient='split')
clustered_df['cluster'] = clustered_df['cluster'] + 1
children = helper_module.cluster_figure(clustered_df)
return children
# request significance threshold and num draws if appropriate
@app.callback(Output('output-req-threshold-req-num-draws', 'children'),
Input('output-cluster-figure', 'children'))
def output_req_threshold_req_num_draws(clustered_figure):
"""
Function to request user input of p-value threshold
and the number of draws to use
Parameters:
:param clustered_figure: the display of the clustered figure
to ensure that clustering is complete
:param cluster_method: the method of clustering as input by the user
:param linkage_method: the linkage method as input by the user
returns:
request user input of p-value threshold and number of draws
"""
if clustered_figure is not None:
children = helper_module.req_threshold_req_num_draws()
return children
# once image is generated, return wald pvalue status DONE
@app.callback(Output('output-wald-status', 'children'),
Input('p-value-button', 'n_clicks'),
Input('sig-threshold', 'value'))
def output_wald_status(n_clicks, sig_threshold):
"""
Function to display status of wald p-value calculation
to the user
Parameters:
:param n_clicks: the number of clicks on the button
:param sig_threshold: the significance threshold as input
by the user
returns:
a status update of the wald p-value calcualtion
"""
if n_clicks > 0:
return html.Div([
html.Div("Calculating wald p-value with threshold: " + str(sig_threshold),
style={'font-weight':'bold', 'font-style':'italic'}),
html.Hr()
])
# once wald status has been returned, store wald pvalue df DONE
@app.callback(Output('output-wald-df', 'data'),
Input('output-wald-status', 'children'),
State('output-cluster-df', 'data'))
def output_wald_df(status, clustered_json):
"""
Function to store the df containing the calculated wald
p-values for future use
Parameters:
:param status: status of wald p-value calculation to
ensure that it has been displayed
:param clustered_json: a df of the clustered data
returns:
stores the wald pvalue df for future use
"""
if status is not None:
clustered_df = pd.read_json(clustered_json, orient='split')
wald_df = helper_module.iterate_wald_test(clustered_df, clustered_df['cluster'])
return wald_df.to_json(orient='split')
# once wald df has been stored, return a preview of pvalue table and return adj pvalue status DONE
@app.callback(Output('output-wald-preview-clusterpval-status', 'children'),
Input('output-wald-df', 'data'))
def output_wald_preview_and_cluserpval_status(wald_json):
"""
Function to preview the calculated wald p-values
Parameters:
:wald_json: pandas df, with results from wald p-values
Returns:
pandas dataframe: a display of p-value dataframe
containing comparisons and their associated wald p-value
"""
if wald_json is not None:
children = helper_module.wald_preview_clusterpval_status(wald_json)
return children
# # once clusterpval status has been returned, store clusterpval df DONE
@app.callback(Output('output-clusterpval-df', 'data'),
Input('output-wald-preview-clusterpval-status', 'children'),
State('output-cluster-df', 'data'),
State('output-wald-df', 'data'),
State('linkage-method', 'value'),
State('num-clusters', 'value'),
State('cluster-method', 'value'),
State('sig-threshold', 'value'),
State('num-draws', 'value'))
def output_clusterpval_df(status, clustered_json, wald_json,
linkage_method, num_clusters, cluster_method, sig_threshold, num_draws):
"""
Function to store the df containing the adjusted
p-values for future use
Parameters:
:param status: status of wald p-value calculation to
ensure that it has been displayed
:param clustered_json: a df of the clustered data
:param wald_json: a df of the calculated wald p-values
:param linkage_method: the linkage method as input by the user
:param num_clusters: the number of clusters as input by the user
:param cluster_method: the clustering method as input by the user
:param sig_threshold: the significance threshold as input by the user
:param num_draws: the number of draws as input by the user
returns:
stores the adusted pvalue df for future use
"""
if status is not None:
clustered_df = pd.read_json(clustered_json, orient='split')
wald_df = pd.read_json(wald_json, orient='split')
if cluster_method == 'hierarchical':
clfun=AgglomerativeClustering
clusterpval_df = helper_module.iterate_stattest_clusters_approx(wald_df,
sig_threshold, clustered_df, clustered_df['cluster'], cl_fun=clfun,
positional_arguments=[], keyword_arguments={'n_clusters': num_clusters,
'affinity': 'euclidean', 'linkage': linkage_method},
n_draws=num_draws)
else:
clfun=KMeans
clusterpval_df = helper_module.iterate_stattest_clusters_approx(wald_df,
sig_threshold, clustered_df, clustered_df['cluster'], cl_fun=clfun,
positional_arguments=[], keyword_arguments={'n_clusters': num_clusters},
n_draws=num_draws)
return clusterpval_df.to_json(orient='split')
# once clusterpval df has been stored, return a preview of pvalue table DONE
@app.callback(Output('output-clusterpval-preview', 'children'),
Input('output-clusterpval-df', 'data'),
State('sig-threshold', 'value'))
def output_cluserpval_preview(clusterpval_json, sig_threshold):
"""
Function to recalculate the significant pvalues obtained from
the wald test to calculate the adjusted pvalue
Parameters:
:param clusterpval_json: pandas dataframe with adjusted pvalues
:param sig_threshold: float, threshold that determine significance
Returns:
pandas dataframe: combined pvalue dataframe
"""
if clusterpval_json is not None:
children = helper_module.clusterpval_preview(clusterpval_json, sig_threshold)
return children
if __name__ == '__main__':
app.run_server(debug=True)