-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathAnnual_forecaster.py
159 lines (132 loc) · 7.32 KB
/
Annual_forecaster.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
import streamlit as st
import pandas as pd
import numpy as np
from sklearn.preprocessing import MinMaxScaler
import joblib
import plotly.graph_objs as go
from plotly.subplots import make_subplots
# Page config
st.set_page_config(layout="wide", page_title="Temperature Forecasting App")
# Add logo
st.image('climate_map_logo.png', width=200) # Adjust the width as needed
# Title
st.title("Temperature Forecasting App")
st.write("Select countries and years to forecast future temperatures.")
# Load the pre-trained model
model = joblib.load('yearly_temp_forecaster.pkl')
historical_data = pd.read_csv('Country-Level-Temperature_2010.csv')
#historical_data = historical_data[historical_data.Year >= '2010-01-01']
# Function to create sequences
def create_sequences(data, seq_length):
sequences = []
labels = []
for i in range(len(data) - seq_length):
seq = data[i:i+seq_length]
label = data[i+seq_length]
sequences.append(seq)
labels.append(label)
return np.array(sequences), np.array(labels)
# Function to predict future values
def predict_future(model, last_sequence, num_steps):
future_predictions = []
current_sequence = last_sequence.copy()
for _ in range(num_steps):
prediction = model.predict(current_sequence.reshape(1, seq_length, -1))[0]
future_predictions.append(prediction)
current_sequence = np.roll(current_sequence, -1, axis=0)
current_sequence[-1] = prediction
return np.array(future_predictions)
# Prepare the dataset
df_country = historical_data.copy()
df_pivot = df_country.pivot_table(index='Year', columns='Country', values='Annual_temperature', aggfunc='first')
# Scaling the data
scaler = MinMaxScaler()
scaled_data = scaler.fit_transform(df_pivot)
# Get a list of countries from the dataset
country_list = df_pivot.columns.tolist()
# To add country and year selectors
selected_countries = st.multiselect('Select countries to predict', country_list)
year_range = st.slider('Select the range of years for prediction', min_value=2023, max_value=2050, value=(2023, 2050))
if selected_countries:
seq_length = 10
last_sequence = scaled_data[-seq_length:]
with st.spinner('Generating forecast...'):
# Generate predictions
# Inverse transform to get actual temperature values
future_scaled = predict_future(model, last_sequence, 2050 - 2022)
future_temperatures = scaler.inverse_transform(future_scaled)
# Create a DataFrame with the predictions
future_years = range(2023, 2051)
future_df = pd.DataFrame(np.round(future_temperatures, 2), index=np.array(future_years).astype(str), columns=df_pivot.columns)
future_df.index.name = 'Year'
# Display forecasted temperatures
st.write("Forecasted Temperature")
st.write(future_df[selected_countries])
# Add download button for CSV
csv_data = future_df[selected_countries].to_csv()
st.download_button(label="Download Forecasted Data as CSV", data=csv_data, file_name='forecasted_temperature.csv', mime='text/csv')
# Plot historical and predicted data (Line Chart)
fig = make_subplots(rows=1, cols=1, subplot_titles=['Historical and Predicted Temperatures for Selected Countries'])
for country in selected_countries:
fig.add_trace(go.Scatter(x=df_pivot.index, y=df_pivot[country], name=f'{country} (Historical)', mode='lines'))
fig.add_trace(go.Scatter(x=future_df.index, y=future_df[country], name=f'{country} (Predicted)', mode='lines'))
fig.update_layout(
title='Historical and Predicted Temperatures for Selected Countries',
xaxis_title='Year',
yaxis_title='Temperature (°C)',
legend_title='Country',
width=1200, # Increase width of the chart
height=600, # Increase height of the chart
xaxis=dict(type='category', title_font=dict(size=18)),
yaxis=dict(title_font=dict(size=18)),
title_font=dict(size=22),
legend=dict(font=dict(size=16)),
margin=dict(l=40, r=40, t=80, b=40) # Adjust margins if needed
)
st.plotly_chart(fig)
# Prepare data for the heatmap
heatmap_data = future_df[selected_countries].reset_index() # Reset index to have 'Year' as a column
heatmap_data_melted = heatmap_data.melt(id_vars='Year', var_name='Country', value_name='Temperature')
# Create the heatmap using pivot_table to reshape the data
heatmap_pivot = heatmap_data_melted.pivot_table(index='Country', columns='Year', values='Temperature')
# Create the heatmap with the color scale from blue to red
heatmap_fig = go.Figure(data=go.Heatmap(
z=heatmap_pivot.values,
x=heatmap_pivot.columns,
y=heatmap_pivot.index,
colorscale='RdBu',
colorbar=dict(title='Temperature (°C)'),
reversescale=True,
hovertemplate="<b>Year: %{x}</b><br>" +
"<b>Country: %{y}</b><br>" +
"<b>Temperature: %{z:.2f} °C</b><extra></extra>",
))
heatmap_fig.update_layout(
title='Forecasted Temperatures Heatmap',
title_font=dict(size=22),
xaxis_title='Year',
#yaxis_title='Country',
xaxis_title_font=dict(size=18),
yaxis_title_font=dict(size=18),
xaxis=dict(
tickangle=-45,
tickvals=list(heatmap_pivot.columns),
ticktext=[str(year) for year in heatmap_pivot.columns], # Display year as text
gridcolor='darkgrey',
showgrid=True,
),
yaxis=dict(showticklabels=False, gridcolor='darkgrey' ), # Hide y-axis tick labels
#template='plotly_white'
)
st.plotly_chart(heatmap_fig)
# Footer section for Methodology
st.markdown("---")
with st.expander("View Methodology"):
st.write("""
### Methodology
The temperature forecasting model uses historical annual average temperature data from 1901. The data used in this study consists of national and subnational level annual average temperature for a period of 121 years (1901-2022) in all the 54 African countries except Western Sahara (there is no available data from this country). The data was collected from the [Climate Change Knowledge Portal](https://climateknowledgeportal.worldbank.org/).
The model employs a Convolutional Neural Networks (CNNs) and Long Short-Term Memory (LSTM) architecture for time series prediction.
Compared to other models, CNN-LSTM offers a unique advantage by capturing both spatial and temporal features, which is particularly important for temperature forecasting. Temperature data is not only a sequential time series but also can exhibit spatial dependencies, especially when considering large-scale climate patterns or regional temperature grids. Traditional time series models like ARIMA or purely LSTM-based approaches focus mainly on temporal dependencies but fail to capture the spatial relationships present in the data. Combining CNNs with LSTM models has proven to be highly effective for time series forecasting, delivering accurate results in temperature predictions [Selmy et al. 3](https://link.springer.com/article/10.1007/s00521-023-09398-9).
Model performance was evaluated using Mean Squared Error (MSE), showing good predictive accuracy in capturing temperature trends, though some discrepancies emerged during rapid changes. The approach proved effective for temperature forecasting, with further tuning potentially improving results.
For more information about the whole methodology please go this website: https://climatemapped-africa.dev.codeforafrica.org/
""")