forked from ntu-rris/google-mediapipe
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy path07_triangulate.py
139 lines (116 loc) · 4.54 KB
/
07_triangulate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
###############################################################################
### Simple demo with at least 2 cameras for triangulation
### Input : Live videos of face / hand / body
### : Calibrated camera intrinsics and extrinsics
### Output: 2D/3D (triangulated) display of hand, body keypoint/joint
### Usage : python 07_triangulate.py -m body --use_panoptic_dataset
###############################################################################
import cv2
import sys
import time
import argparse
import numpy as np
import open3d as o3d
from utils_display import DisplayHand, DisplayBody, DisplayHolistic
from utils_mediapipe import MediaPipeHand, MediaPipeBody, MediaPipeHolistic
from utils_3d_reconstruct import Triangulation
# User select mode
parser = argparse.ArgumentParser()
parser.add_argument('--use_panoptic_dataset', action='store_true')
parser.add_argument('-m', '--mode', default='body',
help='Select mode: hand / body / holistic')
args = parser.parse_args()
mode = args.mode
# Define list of camera index
# cam_idx = [4,10] # Note: Hardcoded for my setup
# Read from .mp4 file
if args.use_panoptic_dataset:
# Test with 2 views
cam_idx = ['../data/171204_pose1_sample/hdVideos/hd_00_00.mp4',
'../data/171204_pose1_sample/hdVideos/hd_00_11.mp4']
# # Test with n views
# num_views = 5 # Note: Maximum 31 hd cameras but processing time will be extremely slow
# cam_idx = []
# for i in range(num_views):
# cam_idx.append(
# '../data/171204_pose1_sample/hdVideos/hd_00_'+str(i).zfill(2)+'.mp4')
# Start video capture
cap = [cv2.VideoCapture(cam_idx[i]) for i in range(len(cam_idx))]
# Define list of other variable
img = [None for i in range(len(cam_idx))] # Store image
pipe = [None for i in range(len(cam_idx))] # MediaPipe class
disp = [None for i in range(len(cam_idx))] # Display class
param = [None for i in range(len(cam_idx))] # Store pose parameter
prev_time = [time.time() for i in range(len(cam_idx))]
# Open3D visualization
vis = o3d.visualization.Visualizer()
vis.create_window(width=640, height=480)
vis.get_render_option().point_size = 5.0
# Load triangulation class
tri = Triangulation(cam_idx=cam_idx, vis=vis,
use_panoptic_dataset=args.use_panoptic_dataset)
# Load mediapipe and display class
if mode=='hand':
for i in range(len(cam_idx)):
pipe[i] = MediaPipeHand(static_image_mode=False, max_num_hands=1)
disp[i] = DisplayHand(draw3d=True, max_num_hands=1, vis=vis)
elif mode=='body':
for i in range(len(cam_idx)):
pipe[i] = MediaPipeBody(static_image_mode=False, model_complexity=1)
disp[i] = DisplayBody(draw3d=True, vis=vis)
elif mode=='holistic':
for i in range(len(cam_idx)):
pipe[i] = MediaPipeHolistic(static_image_mode=False, model_complexity=1)
disp[i] = DisplayHolistic(draw3d=True, vis=vis)
else:
print('Undefined mode only the following modes are available: \n hand / body / holistic')
sys.exit()
while True:
# Loop through video capture
for i, c in enumerate(cap):
if not c.isOpened():
break
ret, img[i] = c.read()
if not ret:
break
# Preprocess image if necessary
# img[i] = cv2.flip(img[i], 1) # Flip image for 3rd person view
# To improve performance, optionally mark image as not writeable to pass by reference
img[i].flags.writeable = False
# Feedforward to extract keypoint
param[i] = pipe[i].forward(img[i])
img[i].flags.writeable = True
# Compute FPS
curr_time = time.time()
fps = 1/(curr_time-prev_time[i])
if mode=='body':
param[i]['fps'] = fps
elif mode=='hand':
param[i][0]['fps'] = fps
elif mode=='holistic':
for p in param[i]:
p['fps'] = fps
prev_time[i] = curr_time
# Perform triangulation
if args.use_panoptic_dataset:
if len(cam_idx)==2:
param = tri.triangulate_2views(param, mode)
else:
param = tri.triangulate_nviews(param, mode)
for i in range(len(cam_idx)):
# Display 2D keypoint
img[i] = disp[i].draw2d(img[i].copy(), param[i])
img[i] = cv2.resize(img[i], None, fx=0.5, fy=0.5)
cv2.imshow('img'+str(i), img[i])
# Display 3D
disp[i].draw3d(param[i])
vis.update_geometry(None)
vis.poll_events()
vis.update_renderer()
key = cv2.waitKey(1)
if key==27:
break
# vis.run() # Keep 3D display for visualization
for p, c in zip(pipe, cap):
p.pipe.close()
c.release()