-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathimageUtil.py
85 lines (62 loc) · 2.58 KB
/
imageUtil.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
from typing import Optional
import numpy as np
import cv2
def findSudokuCorners(img: cv2.typing.MatLike) -> Optional[list[list[int]]]:
"""
Attempts to find a sudoku board within a given image.
If it succeeds, returns a list containing the position of the sudokus
corners on the image, otherwise it returns None.
"""
# Apply grayscaling
img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY)
# Apply gaussian blur
img = cv2.GaussianBlur(img, (7, 7), 1.75)
# Apply adaptive tresholding
img = cv2.adaptiveThreshold(
img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY_INV, 11, 2)
# Find a list of all contours
contours, _ = cv2.findContours(
img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# Find the biggest contour
biggestContour = None
biggestArea = 0
# Ignore contours smaller than 1/16 of the image
minArea = img.shape[0] * img.shape[1] // 16
for contour in contours:
# Approximate the contour
peri = cv2.arcLength(contour, True)
approx = cv2.approxPolyDP(contour, 0.02 * peri, True)
# Ignore contours which dont have exactly 4 corners
if len(approx) != 4:
continue
# Calculate the contour area
area = cv2.contourArea(approx)
# Ignore contours smaller minArea
if area < minArea:
continue
# Save the biggest contour
if area > biggestArea:
biggestContour = approx
biggestArea = area
# Return None if nothing was found
if biggestContour is None:
return None
# Arrange contour coordinates in a list[list[int]]
points = list(biggestContour.ravel())
return [points[i:i + 2] for i in range(0, len(points), 2)]
def getImageSection(img: np.ndarray, x: int, y: int, x_sections: int, y_sections: int) -> np.ndarray:
height, width = img.shape
height //= y_sections
width //= x_sections
section = img[y*height:y*height+height, x*width:x*width+width]
return section
def getTransformedImageSection(img: np.ndarray, points: list[list[int]], width: int, height: int) -> np.ndarray:
output_points = np.array(
[[0, 0], [width, 0], [width, height], [0, width]], dtype=np.float32)
transformation_matrix = cv2.getPerspectiveTransform(points, output_points)
return cv2.warpPerspective(img, transformation_matrix, (width, height))
def drawSudokuSolution(img: np.ndarray, points: list[list[int]], sudoku: np.ndarray) -> np.ndarray:
"""
TODO
Funksjonen skal returnere et bilde der løsningen av sudokuen har blitt tegnet på bildet.
"""