Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Robust Federated Learning: The Case of Affine Distribution Shifts #43

Open
nocotan opened this issue Feb 25, 2021 · 0 comments
Open

Robust Federated Learning: The Case of Affine Distribution Shifts #43

nocotan opened this issue Feb 25, 2021 · 0 comments
Assignees

Comments

@nocotan
Copy link
Member

nocotan commented Feb 25, 2021

一言でいうと

Structured affine distribution shiftにおいてロバストなFederated learningのアルゴリズムを提案.

論文リンク

https://papers.nips.cc/paper/2020/file/f5e536083a438cec5b64a4954abc17f1-Paper.pdf

著者/所属機関

Amirhossein Reisizadeh et al.
(ECE Department, UC Santa Barbara)

投稿日付(yyyy/MM/dd)

2020/12

概要

データセットシフト下においてロバストなFederated learningのアルゴリズムを提案.
これを達成するため,ユーザのデータがデバイス依存であるようなstructured affine distribution shiftを考慮する.
このような問題設定においてロバストなFederated Learning framework Robust to Affine distribution shifts (FLRA)を提案.

新規性・差分

  • 提案手法の汎化誤差をPAC-Bayesのフレームワークで理論解析

手法

Screen Shot 2021-02-26 at 3 26 38

結果

Screen Shot 2021-02-26 at 3 26 48

Screen Shot 2021-02-26 at 3 26 53

コメント

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Projects
None yet
Development

No branches or pull requests

1 participant