-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdetect.py
206 lines (167 loc) · 8.93 KB
/
detect.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
import argparse
from sys import platform
from cellyolomodels import * # set ONNX_EXPORT in cellyolomodels.py
from cellyolo.utils import *
def segmentation(opt):
img_size = (320, 192) if ONNX_EXPORT else opt.img_size # (320, 192) or (416, 256) or (608, 352) for (height, width)
out, source, weights, half, view_img, save_txt = opt.output, opt.source, opt.weights, opt.half, opt.view_img, opt.save_txt
webcam = source == '0' or source.startswith('rtsp') or source.startswith('http') or source.endswith('.txt')
# Initialize
device = torch_utils.select_device(device='cpu' if ONNX_EXPORT else opt.device)
if os.path.exists(out):
shutil.rmtree(out) # delete output folder
os.makedirs(out) # make new output folder
# Initialize model
model = Darknet(opt.cfg, img_size)
# Load weights
attempt_download(weights)
if weights.endswith('.pt'): # pytorch format
model.load_state_dict(torch.load(weights, map_location=device)['model'])
else: # darknet format
_ = load_darknet_weights(model, weights)
# Second-stage classifier
classify = False
if classify:
modelc = torch_utils.load_classifier(name='resnet101', n=2) # initialize
modelc.load_state_dict(torch.load('weights/resnet101.pt', map_location=device)['model']) # load weights
modelc.to(device).eval()
# Fuse Conv2d + BatchNorm2d layers
# model.fuse()
# Eval mode
model.to(device).eval()
# Export mode
if ONNX_EXPORT:
img = torch.zeros((1, 3) + img_size) # (1, 3, 320, 192)
torch.onnx.export(model, img, 'weights/export.onnx', verbose=False, opset_version=10)
# Validate exported model
import onnx
model = onnx.load('weights/export.onnx') # Load the ONNX model
onnx.checker.check_model(model) # Check that the IR is well formed
print(onnx.helper.printable_graph(model.graph)) # Print a human readable representation of the graph
return
# Half precision
half = half and device.type != 'cpu' # half precision only supported on CUDA
if half:
model.half()
# Set Dataloader
vid_path, vid_writer = None, None
if webcam:
view_img = True
torch.backends.cudnn.benchmark = True # set True to speed up constant image size inference
dataset = LoadStreams(source, img_size=img_size, half=half)
else:
save_img = True
dataset = LoadImages(source, img_size=img_size, half=half)
# Get names and colors
names = load_classes(opt.names)
colors = [[random.randint(0, 255) for _ in range(3)] for _ in range(len(names))]
# Run inference
t0 = time.time()
for path, img, im0s, vid_cap in dataset:
t = time.time()
# Get detections
img = torch.from_numpy(img).to(device)
if img.ndimension() == 3:
img = img.unsqueeze(0)
pred = model(img)[0]
if opt.half:
pred = pred.float()
# Apply NMS
pred = non_max_suppression(pred, opt.conf_thres, opt.iou_thres, classes=opt.classes)
# Apply Classifier
if classify:
pred = apply_classifier(pred, modelc, img, im0s)
print(len(pred))
# Process detections
for i, det in enumerate(pred): # detections per image
if webcam: # batch_size >= 1
p, s, im0 = path[i], '%g: ' % i, im0s[i]
else:
p, s, im0 = path, '', im0s
save_path = str(Path(out) / Path(p).name)
s += '%gx%g ' % img.shape[2:] # print string
if det is not None and len(det):
print(len(det))
# Rescale boxes from img_size to im0 size
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], im0.shape).round()
# Print results
for c in det[:, -1].unique():
n = (det[:, -1] == c).sum() # detections per class
s += '%g %ss, ' % (n, names[int(c)]) # add to string
# for mutil detections
for i in range(len(det)):
if i <= len(det) - 2:
# print(det[i][0:4])
det[i][0:4] = GBCIOU(det[i][0:4], det[i + 1][0:4], x1y1x2y2=True)[0]
det[i + 1][0:4] = GBCIOU(det[i][0:4], det[i + 1][0:4], x1y1x2y2=True)[1]
else:
pass
# Write results
for *xyxy, conf, cls in det:
if save_txt: # Write to file
savepath = str(Path(out) / Path(p).name).split('.')[0]
with open(savepath + '.txt', 'a') as file:
box_x_min = int(xyxy[0]) # 左上角横坐标
box_y_min = int(xyxy[1]) # 左上角纵坐标
box_x_max = int(xyxy[2]) # 右下角横坐标
box_y_max = int(xyxy[3]) # 右下角纵坐标
# 转成相对位置和宽高#转换成yolov3的标签格式,需要归一化到(0-1)的范围内
x_center = round((box_x_min + box_x_max) / (2 * im0.shape[1]), 4)
y_center = round((box_y_min + box_y_max) / (2 * im0.shape[0]), 4)
width = round((box_x_max - box_x_min) / im0.shape[1], 4)
height = round((box_y_max - box_y_min) / im0.shape[0], 4)
file.write(('%g ' * 5 + '\n') % (0, x_center, y_center, width, height))
if save_img or view_img: # Add bbox to image
label = '%s %.2f' % (names[int(cls)], conf)
# to view of the box detection
#plot_one_box(xyxy, im0, label=label, color=colors[int(cls)])
# to see of the confidence score
#im0=plot_one_cycle(xyxy, im0, label=label, color=colors[int(cls)])
# to save only circle segment after cellyolo
im0 = plot_one_cycle(xyxy, im0, color=colors[int(cls)])
# Print time (inference + NMS)
print('%sDone. (%.3fs)' % (s, time.time() - t))
# Stream results
if view_img:
cv2.imshow(p, im0)
if cv2.waitKey(1) == ord('q'): # q to quit
raise StopIteration
# Save results (image with detections)
if save_img:
if dataset.mode == 'images':
cv2.imwrite(save_path, im0)
else:
if vid_path != save_path: # new video
vid_path = save_path
if isinstance(vid_writer, cv2.VideoWriter):
vid_writer.release() # release previous video writer
fps = vid_cap.get(cv2.CAP_PROP_FPS)
w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
vid_writer = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*opt.fourcc), fps, (w, h))
vid_writer.write(im0)
if save_txt or save_img:
print('Results saved to %s' % os.getcwd() + os.sep + out)
if platform == 'darwin': # MacOS
os.system('open ' + out + ' ' + save_path)
print('Done. (%.3fs)' % (time.time() - t0))
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--cfg', type=str, default='cellyolo/cfg/yolov3-tiny-train.cfg', help='*.cfg path')
parser.add_argument('--names', type=str, default='cellyolo/data/coco.names', help='*.names path')
parser.add_argument('--weights', type=str, default='cellyolo/weights/best.pt', help='path to weights file')
parser.add_argument('--source', type=str, default='cellyolo/5000imagesforretraincellyolo', help='source') # input file/folder, 0 for webcam
parser.add_argument('--output', type=str, default='cellyolo/output', help='output folder') # output folder
parser.add_argument('--img-size', type=int, default=416, help='inference size (pixels)')
parser.add_argument('--conf-thres', type=float, default=0.3, help='object confidence threshold')
parser.add_argument('--iou-thres', type=float, default=0.5, help='IOU threshold for NMS')
parser.add_argument('--fourcc', type=str, default='mp4v', help='output video codec (verify ffmpeg support)')
parser.add_argument('--half', action='store_true', help='half precision FP16 inference')
parser.add_argument('--device', default='', help='device id (i.e. 0 or 0,1) or cpu')
parser.add_argument('--view-img', action='store_true', default=0, help='display results')
parser.add_argument('--save-txt', action='store_true', default=0, help='display results')
parser.add_argument('--classes', nargs='+', type=int, help='filter by class')
opt = parser.parse_args()
print(opt)
with torch.no_grad():
detect()