-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathbest_contexts.py
147 lines (122 loc) · 5.72 KB
/
best_contexts.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
"""Define BestContextFinder class, which can be used to find the best contexts for a given query"""
import os
from random import sample
from typing import Dict, List, Literal, Tuple
import numpy as np
from nltk.corpus import stopwords
from sentence_transformers import SentenceTransformer
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.metrics.pairwise import cosine_similarity
from tqdm import tqdm
from dataloader import load_contexts, load_data
class BestContextFinder:
"""Find the best contexts for specific queries"""
def __init__(
self,
method: Literal["transformers", "tfidf"] = "transformers",
dataset_path: str = "squad1/train-v1.1.json",
with_questions: bool = False,
recompute: bool = False,
) -> None:
"""
Create a BestContextFinder, to find relevant paragraphs for a query.
Parameters
----------
method : {"transformers", "tfidf"}, optional
method to use to encode the sentences, by default "transformers"
dataset_path : str, optional
path to the dataset (must be a json file in SQuAD format), by default "squad1/train-v1.1.json"
with_questions : bool, optional
whether questions should be loaded from the dataset, by default False
recompute : bool, optional
(only for transformers) force recompute of embeddings, even if a version exists in cache, by default False
"""
if with_questions:
self.contexts, self.questions = load_data(dataset_path)
else:
self.contexts = load_contexts(dataset_path)
self.questions = None
self.method = method
if method == "transformers":
self.model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
if (
os.path.exists(os.path.join("_cache_", os.path.basename(dataset_path) + ".npy"))
and not recompute
):
self.paragraphs_vectors = np.load(
os.path.join("_cache_", os.path.basename(dataset_path) + ".npy")
)
else:
self.paragraphs_vectors = self.model.encode(self.contexts)
os.makedirs("_cache_", exist_ok=True)
np.save(
os.path.join("_cache_", os.path.basename(dataset_path)),
self.paragraphs_vectors,
)
elif method == "tfidf":
self.vectorizer = TfidfVectorizer(min_df=0, stop_words=stopwords.words("english"))
self.paragraphs_vectors = self.vectorizer.fit_transform(self.contexts)
else:
raise ValueError("Method not supported")
def get_best_contexts(self, query: str) -> Tuple[List[str], List[int], List[float]]:
"""
Rank the contexts according to their relevance to the query.
Parameters
----------
query : str
Query to use to rank the contexts.
Returns
-------
Tuple[List[str], List[int], List[float]]
A tuple with 3 lists:
- the contexts in order of relevance to the query
- the corresponding indexes of the contexts in the original list
- the similarity_scores of the contexts with the query (in order of relevance)
"""
# Encode the query using the same model used to encode the paragraphs
if self.method == "transformers":
question_vector = self.model.encode([query])
elif self.method == "tfidf":
question_vector = self.vectorizer.transform([query])
# Search the best contexts using cosine similarity
similarity_scores: np.ndarray = cosine_similarity(question_vector, self.paragraphs_vectors)
top_indexes = list(similarity_scores.argsort()[0][::-1])
return (
[self.contexts[i] for i in top_indexes],
top_indexes,
[similarity_scores[0][i] for i in top_indexes],
)
def evaluate(self, num_samples: int = 200, repeat: int = 1) -> Dict[str, List[float]]:
"""
Evaluate the model on a random sample of queries from the dataset. The model must have been loaded with questions to use this function.
Parameters
----------
num_samples : int, optional
number of samples to use for the evaluation, by default 200
repeat : int, optional
number of times to repeat the evaluation (useful to evaluate the variance), by default 1
Returns
-------
Dict[str, List[float]]
dictionary with two lists (each item in a list corresponds to a run of evaluation):
- "mean_ranks": the mean rank of the best context for each query
(how is the best context ranked in our model)
- "accuracies": the accuracies of the best contexts for each query
(how many times did the model find the best context)
"""
if self.questions is None:
raise ValueError("The model must have questions to use this function")
mean_ranks = []
accuracies = []
for _ in range(repeat):
questions = sample(self.questions, num_samples)
ranks = []
accuracies.append(0)
for question in tqdm(questions):
_, top_indexes, _ = self.get_best_contexts(question["question"])
ranks.append(top_indexes.index(question["context_id"]))
if top_indexes.index(question["context_id"]) == 0:
accuracies[-1] += 1
accuracies[-1] /= num_samples
mean_ranks.append(np.mean(ranks))
return {"mean_ranks": mean_ranks, "accuracies": accuracies}