diff --git a/technical_indicators.py b/technical_indicators.py index 9850916..e04a156 100644 --- a/technical_indicators.py +++ b/technical_indicators.py @@ -32,6 +32,8 @@ def moving_average(df, n): """ MA = pd.Series(df['Close'].rolling(n, min_periods=n).mean(), name='MA_' + str(n)) df = df.join(MA) +#Rename to reflect period + df.rename(columns = {'MA' : 'MA{}'.format(n)}, inplace=True) return df @@ -44,6 +46,8 @@ def exponential_moving_average(df, n): """ EMA = pd.Series(df['Close'].ewm(span=n, min_periods=n).mean(), name='EMA_' + str(n)) df = df.join(EMA) + #Rename to reflect period + df.rename(columns = {'MA' : 'MA{}'.format(n)}, inplace=True) return df @@ -56,6 +60,8 @@ def momentum(df, n): """ M = pd.Series(df['Close'].diff(n), name='Momentum_' + str(n)) df = df.join(M) + #Rename to reflect period + df.rename(columns = {'MA' : 'MA{}'.format(n)}, inplace=True) return df @@ -70,6 +76,8 @@ def rate_of_change(df, n): N = df['Close'].shift(n - 1) ROC = pd.Series(M / N, name='ROC_' + str(n)) df = df.join(ROC) + #Rename to reflect period + df.rename(columns = {'MA' : 'MA{}'.format(n)}, inplace=True) return df @@ -89,6 +97,8 @@ def average_true_range(df, n): TR_s = pd.Series(TR_l) ATR = pd.Series(TR_s.ewm(span=n, min_periods=n).mean(), name='ATR_' + str(n)) df = df.join(ATR) + #Rename to reflect period + df.rename(columns = {'MA' : 'MA{}'.format(n)}, inplace=True) return df @@ -107,6 +117,8 @@ def bollinger_bands(df, n): b2 = (df['Close'] - MA + 2 * MSD) / (4 * MSD) B2 = pd.Series(b2, name='Bollinger%b_' + str(n)) df = df.join(B2) + #Rename to reflect period + df.rename(columns = {'MA' : 'MA{}'.format(n)}, inplace=True) return df @@ -126,6 +138,7 @@ def ppsr(df): psr = {'PP': PP, 'R1': R1, 'S1': S1, 'R2': R2, 'S2': S2, 'R3': R3, 'S3': S3} PSR = pd.DataFrame(psr) df = df.join(PSR) + #Rename to reflect period return df @@ -137,6 +150,7 @@ def stochastic_oscillator_k(df): """ SOk = pd.Series((df['Close'] - df['Low']) / (df['High'] - df['Low']), name='SO%k') df = df.join(SOk) +#Rename to reflect period return df @@ -149,6 +163,8 @@ def stochastic_oscillator_d(df, n): SOk = pd.Series((df['Close'] - df['Low']) / (df['High'] - df['Low']), name='SO%k') SOd = pd.Series(SOk.ewm(span=n, min_periods=n).mean(), name='SO%d_' + str(n)) df = df.join(SOd) +#Rename to reflect period + df.rename(columns = {'SOd' : 'SOd{}'.format(n)}, inplace=True) return df @@ -170,6 +186,8 @@ def trix(df, n): i = i + 1 Trix = pd.Series(ROC_l, name='Trix_' + str(n)) df = df.join(Trix) +#Rename to reflect period + df.rename(columns = {'Trix' : 'Trix{}'.format(n)}, inplace=True) return df @@ -213,6 +231,8 @@ def average_directional_movement_index(df, n, n_ADX): ADX = pd.Series((abs(PosDI - NegDI) / (PosDI + NegDI)).ewm(span=n_ADX, min_periods=n_ADX).mean(), name='ADX_' + str(n) + '_' + str(n_ADX)) df = df.join(ADX) +#Rename to reflect period + df.rename(columns = {'ADX' : 'ADX{}+{}'.format(n, n_ADX)}, inplace=True) return df @@ -232,6 +252,12 @@ def macd(df, n_fast, n_slow): df = df.join(MACD) df = df.join(MACDsign) df = df.join(MACDdiff) + #Rename to reflect period + df.rename(columns = {'MACD' : 'MACD{}_{}'.format(n_fast,n_slow)}, inplace=True) + #Rename to reflect period + df.rename(columns = {'MACDsign' : 'MACDsign{}_{}'.format(n_fast,n_slow)}, inplace=True) + #Rename to reflect period + df.rename(columns = {'MACDdiff' : 'MACDdiff{}_{}'.format(n_fast, n_slow)}, inplace=True) return df @@ -247,6 +273,7 @@ def mass_index(df): Mass = EX1 / EX2 MassI = pd.Series(Mass.rolling(25).sum(), name='Mass Index') df = df.join(MassI) + #Rename to reflect period return df @@ -273,6 +300,8 @@ def vortex_indicator(df, n): i = i + 1 VI = pd.Series(pd.Series(VM).rolling(n).sum() / pd.Series(TR).rolling(n).sum(), name='Vortex_' + str(n)) df = df.join(VI) + #Rename to reflect period + df.rename(columns = {'VI' : 'VI{}'.format(n)}, inplace=True) return df @@ -307,6 +336,8 @@ def kst_oscillator(df, r1, r2, r3, r4, n1, n2, n3, n4): name='KST_' + str(r1) + '_' + str(r2) + '_' + str(r3) + '_' + str(r4) + '_' + str(n1) + '_' + str( n2) + '_' + str(n3) + '_' + str(n4)) df = df.join(KST) + #Rename to reflect period + df.rename(columns = {'KSI' : 'KSI{}_{}_{}_{}_{}_{}_{}_{}'.format(r1,r2,r3,r4,n1,n2,n3,n4)}, inplace=True) return df @@ -340,6 +371,8 @@ def relative_strength_index(df, n): NegDI = pd.Series(DoI.ewm(span=n, min_periods=n).mean()) RSI = pd.Series(PosDI / (PosDI + NegDI), name='RSI_' + str(n)) df = df.join(RSI) + #Rename to reflect period + df.rename(columns = {'RSI' : 'RSI{}'.format(n)}, inplace=True) return df @@ -359,6 +392,8 @@ def true_strength_index(df, r, s): aEMA2 = pd.Series(aEMA1.ewm(span=s, min_periods=s).mean()) TSI = pd.Series(EMA2 / aEMA2, name='TSI_' + str(r) + '_' + str(s)) df = df.join(TSI) + #Rename to reflect period + df.rename(columns = {'TSI' : 'TSI{}_{}'.format(r, s)}, inplace=True) return df @@ -375,6 +410,8 @@ def accumulation_distribution(df, n): ROC = M / N AD = pd.Series(ROC, name='Acc/Dist_ROC_' + str(n)) df = df.join(AD) + #Rename to reflect period + df.rename(columns = {'AD' : 'AD{}'.format(n)}, inplace=True) return df @@ -387,6 +424,7 @@ def chaikin_oscillator(df): ad = (2 * df['Close'] - df['High'] - df['Low']) / (df['High'] - df['Low']) * df['Volume'] Chaikin = pd.Series(ad.ewm(span=3, min_periods=3).mean() - ad.ewm(span=10, min_periods=10).mean(), name='Chaikin') df = df.join(Chaikin) + return df @@ -411,6 +449,8 @@ def money_flow_index(df, n): MFR = pd.Series(PosMF / TotMF) MFI = pd.Series(MFR.rolling(n, min_periods=n).mean(), name='MFI_' + str(n)) df = df.join(MFI) + #Rename to reflect period + df.rename(columns = {'MFI' : 'MFI{}'.format(n)}, inplace=True) return df @@ -434,6 +474,8 @@ def on_balance_volume(df, n): OBV = pd.Series(OBV) OBV_ma = pd.Series(OBV.rolling(n, min_periods=n).mean(), name='OBV_' + str(n)) df = df.join(OBV_ma) + #Rename to reflect period + df.rename(columns = {'OBC_ma' : 'OBV_ma{}'.format(n)}, inplace=True) return df @@ -446,6 +488,8 @@ def force_index(df, n): """ F = pd.Series(df['Close'].diff(n) * df['Volume'].diff(n), name='Force_' + str(n)) df = df.join(F) + #Rename to reflect period + df.rename(columns = {'F' : 'F{}'.format(n)}, inplace=True) return df @@ -459,6 +503,8 @@ def ease_of_movement(df, n): EoM = (df['High'].diff(1) + df['Low'].diff(1)) * (df['High'] - df['Low']) / (2 * df['Volume']) Eom_ma = pd.Series(EoM.rolling(n, min_periods=n).mean(), name='EoM_' + str(n)) df = df.join(Eom_ma) + #Rename to reflect period + df.rename(columns = {'Eom_ma' : 'Eom_ma{}'.format(n)}, inplace=True) return df @@ -473,6 +519,8 @@ def commodity_channel_index(df, n): CCI = pd.Series((PP - PP.rolling(n, min_periods=n).mean()) / PP.rolling(n, min_periods=n).std(), name='CCI_' + str(n)) df = df.join(CCI) + #Rename to reflect period + df.rename(columns = {'CCI' : 'CCI{}'.format(n)}, inplace=True) return df @@ -491,6 +539,8 @@ def coppock_curve(df, n): ROC2 = M / N Copp = pd.Series((ROC1 + ROC2).ewm(span=n, min_periods=n).mean(), name='Copp_' + str(n)) df = df.join(Copp) + #Rename to reflect period + df.rename(columns = {'Copp' : 'Copp{}'.format(n)}, inplace=True) return df @@ -510,6 +560,8 @@ def keltner_channel(df, n): df = df.join(KelChM) df = df.join(KelChU) df = df.join(KelChD) + #Rename to reflect period + df.rename(columns = {'KelChU' : 'KelChU{}'.format(n),'KelChD' : 'KelChD{}'.format(n),'KelChM' : 'KelChM{}'.format(n)}, inplace=True) return df @@ -533,6 +585,8 @@ def ultimate_oscillator(df): pd.Series(BP_l).rolling(28).sum() / pd.Series(TR_l).rolling(28).sum()), name='Ultimate_Osc') df = df.join(UltO) + #reflect perion + df.rename(columns = {'UltO' : 'UltO{}'.format(n)}, inplace=True) return df @@ -556,7 +610,10 @@ def donchian_channel(df, n): donchian_chan = pd.Series(dc_l, name='Donchian_' + str(n)) donchian_chan = donchian_chan.shift(n - 1) - return df.join(donchian_chan) + df.join(donchian_chan) + #reflect perion + df.rename(columns = {'donchian_chan' : 'donchian_chan{}'.format(n)}, inplace=True) + return df def standard_deviation(df, n): @@ -567,4 +624,5 @@ def standard_deviation(df, n): :return: pandas.DataFrame """ df = df.join(pd.Series(df['Close'].rolling(n, min_periods=n).std(), name='STD_' + str(n))) + #reflect perion return df