-
Notifications
You must be signed in to change notification settings - Fork 40
/
Copy pathMultiDataCollection.py
192 lines (162 loc) · 6.46 KB
/
MultiDataCollection.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
from DataCollection import DataCollection
from multiprocessing import cpu_count
from itertools import izip
from pdb import set_trace
import numpy as np
from copy import deepcopy
class MultiDataCollection(object):
'''This class allows the simultaneous use of multiple
DataCollections for a training, it provides the same interface
and adds the functionality of adding Y targets as well as flags returned instead of the weights.
In case of weights the flag is multiplied by the weight value
Constructor ([infiles = None[, nprocs = -1[, add_ys = [][, flags=[]]]]])
optional parameters:
infiles: list of input dataCollection files to be opened
nprocs: number of processors to use
add_ys: list of additional Y targets to be added at generator time, must be the same length of the input collections. The list content must be iterable, each iteration produces a new target, only scalar type supprted for now
flags: like add_ys, same rules apply. The flags gets multiplied by the event weight is case weights are used. The lenght of the flags must be the same as the TOTAL number of Y targets. Flags are returned instead of the event weights
'''
def __init__(self, infiles = None, nprocs = -1, add_ys = [] ,flags=[]):
'''Constructor'''
self.collections = []
self.nprocs = nprocs
self.meansnormslimit=500000
self.flags = []
self.generator_modifier = lambda x: x
self.additional_ys = []
if infiles:
self.collections = [
DataCollection(
i,
cpu_count()/len(infiles) if nprocs == -1 else nprocs/len(infiles)
) for i in infiles]
if flags:
self.setFlags(flags)
if add_ys:
self.addYs(add_ys)
@property
def useweights(self):
return all(i.useweights for i in self.collections)
@useweights.setter
def useweights(self, val):
for i in self.collections:
i.useweights = val
def addYs(self, add_ys):
'adds Ys that will be appended on the fly to the generator, Ys are a list of iterables'
if len(add_ys) != len(self.collections):
raise ValueError('The Ys must be the same lenght of the input collections')
self.additional_ys = add_ys
def readFromFile(self, infiles):
self.collections = [
DataCollection(
i, cpu_count()/len(infiles) if self.nprocs == -1 else self.nprocs/len(infiles)
) for i in infiles]
def setFlags(self, flags):
'adds flags that will be added on the fly to the generator, flags are a list of iterables'
if len(flags) != len(self.collections):
raise ValueError('The flags must be the same lenght of the input collections')
self.flags = flags
def getInputShapes(self):
'Gets the input shapes from the data class description'
shapes = [i.getInputShapes() for i in self.collections]
if not all(i == shapes[0] for i in shapes):
raise ValueError('Input collections have different input shapes!')
return shapes[0]
def getTruthShape(self):
shapes = [i.getTruthShape() for i in self.collections]
if not all(i == shapes[0] for i in shapes):
raise ValueError('Input collections have different input shapes!')
return shapes[0]
def getNRegressionTargets(self):
shapes = [i.getNRegressionTargets() for i in self.collections]
if not all(i == shapes[0] for i in shapes):
raise ValueError('Input collections have different input shapes!')
return shapes[0]
def getNClassificationTargets(self):
shapes = [i.getNClassificationTargets() for i in self.collections]
if not all(i == shapes[0] for i in shapes):
raise ValueError('Input collections have different input shapes!')
return shapes[0]
def getUsedTruth(self):
shapes = [i.getUsedTruth() for i in self.collections]
if not all(i == shapes[0] for i in shapes):
raise ValueError('Input collections have different input shapes!')
return shapes[0]
def split(self,ratio):
'splits the sample into two parts, one is kept as the new collection, the other is returned'
out = [i.split(ratio) for i in self.collections]
retval = deepcopy(self)
retval.collections = out
return retval
def writeToFile(self, fname):
for idx, i in enumerate(self.collections):
i.writeToFile(fname.replace('.dc', '%d.dc' % idx))
def generator(self):
'''Batch generator. Heavily based on the DataCollection one.
Adds flags on the fly at the end of each Y'''
generators = [i.generator() for i in self.collections]
flags = self.flags if self.flags else [None for i in self.collections]
add_ys = self.additional_ys if self.additional_ys else [[] for i in self.collections]
for zipped in izip(*generators):
xtot, wtot, ytot = None, None, None
for xyw, flag, add_y in zip(zipped, flags, add_ys):
if len(xyw) == 3:
x, y, w = deepcopy(xyw)
else: #len(xyw) == 3:
x, y = deepcopy(xyw)
w = [np.ones((x[0].shape[0]))] if self.flags else None
batch_size = x[0].shape[0]
ones = np.ones((batch_size, 1))
for template in add_y:
y_to_add = np.hstack([ones*i for i in template]) \
if hasattr(template, '__iter__') else \
ones*template
y.append(y_to_add)
#create the flags
if self.flags:
if len(flag) != len(y):
raise ValueError(
'Flags (if any) and total Y number MUST'
' be the same! Got: %d and %d' % (len(flag), len(y)))
w = [w[0]*i for i in flag]
if xtot is None:
xtot = x
ytot = y
wtot = w
else:
xtot = [np.vstack([itot, ix]) for itot, ix in zip(xtot, x)]
ytot = [np.vstack([itot, iy]) for itot, iy in zip(ytot, y)]
if w is not None:
wtot = [np.concatenate([itot, iw]) for itot, iw in zip(wtot, w)]
if wtot is None:
yield self.generator_modifier((xtot, ytot))
else:
yield self.generator_modifier((xtot, ytot, wtot))
def __len__(self):
return sum(len(i) for i in self.collections)
@property
def sizes(self):
return [len(i) for i in self.collections]
@property
def nsamples(self):
return len(self)
def setBatchSize(self,bsize):
if bsize > len(self):
raise Exception('Batch size must not be bigger than total sample size')
for i in self.collections:
batch = bsize*len(i)/len(self)
i.setBatchSize(batch)
@property
def batches(self):
return [i.batch_size for i in self.collections]
def getAvEntriesPerFile(self):
return min(i.getAvEntriesPerFile() for i in self.collections)
@property
def maxFilesOpen(self):
return max(i.maxFilesOpen for i in self.collections)
@maxFilesOpen.setter
def maxFilesOpen(self, val):
for i in self.collections:
i.maxFilesOpen = val
def getNBatchesPerEpoch(self):
return sum(i.getNBatchesPerEpoch() for i in self.collections)/len(self.collections)