-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathqlearningAgents.py
156 lines (123 loc) · 4.92 KB
/
qlearningAgents.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# qlearningAgents.py
# ------------------
# Licensing Information: You are free to use or extend these projects for
# educational purposes provided that (1) you do not distribute or publish
# solutions, (2) you retain this notice, and (3) you provide clear
# attribution to UC Berkeley, including a link to http://ai.berkeley.edu.
#
# Attribution Information: The Pacman AI projects were developed at UC Berkeley.
# The core projects and autograders were primarily created by John DeNero
# (denero@cs.berkeley.edu) and Dan Klein (klein@cs.berkeley.edu).
# Student side autograding was added by Brad Miller, Nick Hay, and
# Pieter Abbeel (pabbeel@cs.berkeley.edu).
from game import *
from learningAgents import ReinforcementAgent
import random,util,math
class QLearningAgent(ReinforcementAgent):
"""
Q-Learning Agent
Functions you should fill in:
- computeValueFromQValues
- computeActionFromQValues
- getQValue
- getAction
- update
Instance variables you have access to
- self.epsilon (exploration prob)
- self.alpha (learning rate)
- self.discount (discount rate)
Functions you should use
- self.getLegalActions(state)
which returns legal actions for a state
"""
def __init__(self, **args):
"You can initialize Q-values here..."
ReinforcementAgent.__init__(self, **args)
"*** YOUR CODE HERE ***"
self.qValues = util.Counter()
def getQValue(self, state, action):
"""
Returns Q(state,action)
Should return 0.0 if we have never seen a state
or the Q node value otherwise
"""
"*** YOUR CODE HERE ***"
return self.qValues[(state, action)]
def computeValueFromQValues(self, state):
"""
Returns max_action Q(state,action)
where the max is over legal actions. Note that if
there are no legal actions, which is the case at the
terminal state, you should return a value of 0.0.
"""
"*** YOUR CODE HERE ***"
legal_moves = self.getLegalActions(state)
if len(legal_moves) == 0:
return 0.0
best_action = self.getPolicy(state)
return self.getQValue(state, best_action)
def computeActionFromQValues(self, state):
"""
Compute the best action to take in a state. Note that if there
are no legal actions, which is the case at the terminal state,
you should return None.
"""
"*** YOUR CODE HERE ***"
legal_moves = self.getLegalActions(state)
best_action = None
max = float('-inf')
for move in legal_moves:
qValue = self.qValues[(state, move)]
if qValue > max:
max = qValue
best_action = move
return best_action
def getAction(self, state):
"""
Compute the action to take in the current state. With
probability self.epsilon, we should take a random action and
take the best policy action otherwise. Note that if there are
no legal actions, which is the case at the terminal state, you
should choose None as the action.
HINT: You might want to use util.flipCoin(prob = 0.1) to get a True value prob percentage of the times.
HINT: To pick randomly from a list, use random.choice(list)
"""
legalActions = self.getLegalActions(state)
action = None
"*** YOUR CODE HERE ***"
if len(legalActions) == 0:
return None
random_chance = util.flipCoin(self.epsilon)
if random_chance:
action = random.choice(legalActions)
else:
action = self.getPolicy(state)
return action
def update(self, state, action, nextState, reward):
"""
The parent class calls this to observe a
state = action => nextState and reward transition.
You should do your Q-Value update here
NOTE: You should never call this function,
it will be called on your behalf
"""
"*** YOUR CODE HERE ***"
qValue = self.getQValue(state, action)
first_term = (1 - self.alpha) * qValue
qReward = self.alpha * reward
if not nextState:
self.qValues[(state, action)] = first_term + qReward
else:
nextState_term = self.alpha * self.discount * self.getValue(nextState)
self.qValues[(state, action)] = first_term + qReward + nextState_term
"""
QLearning update algorithm:
Q(s,a) = (1-alpha)*Q(s,a) + alpha*sample
***sample = R(s,a,s') + gamma*max(Q(s',a'))***
"""
def getPolicy(self, state):
"Returns the policy at the state."
"*** YOUR CODE HERE ***"
return self.computeActionFromQValues(state)
def getValue(self, state):
return self.computeValueFromQValues(state)