This repository has been archived by the owner on Nov 13, 2022. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathGA.py
169 lines (141 loc) · 6.54 KB
/
GA.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
data = [
['top', 't-shirt', ['dark', 'bright'], ['casual', 'sportswear'], 0.0],
['top', 'blouse', ['bright'], ['business', 'evening'], 200.0],
['top', 'bodysuit', ['dark'], ['casual', 'evening'], 150.0],
['top', 'sleeveless', ['dark'], ['casual'], 110.0],
['top', 'tank', ['bright'], ['casual', 'sportswear'], 70.0],
['top', 'sweater', ['dark'], ['casual', 'business'], 200.0],
['top', 'vest', ['dark'], ['business'], 300.0],
['top', 'blazer', ['dark'], ['business'], 430.0],
['top', 'jacket', ['bright'], ['casual'], 0.0],
['top', 'hoodie', ['bright', 'dark'], ['sportswear'], 230.0],
['top', 'cardigan', ['bright'], ['casual'], 300.0],
['bottom', 'jeans', ['dark'], ['casual'], 150.0],
['bottom', 'knee length pant', ['bright'], ['casual'], 220.0],
['bottom', 'ankle length pant', ['dark'], ['business'], 0.0],
['bottom', 'high waist pant', ['bright'], ['business'], 150.0],
['bottom', 'legging', ['dark'], ['casual'], 100.0],
['bottom', 'sweatpants', ['bright'], ['casual'], 100.0],
['bottom', 'wide leg pants', ['dark', 'bright'], ['business', 'evening'], 500.0],
['bottom', 'maxi skirt', ['bright'], ['evening'], 500.0],
['bottom', 'midi skirt', ['dark'], ['business'], 0.0],
['bottom', 'short skirt', ['bright'], ['casual'], 400.0],
['shoes', 'sandals', ['dark'], ['casual', 'evening'], 120.0],
['shoes', 'sneakers', ['bright'], ['sportswear', 'casual'], 300.0],
['shoes', 'high heel', ['dark'], ['evening'], 0.0],
['shoes', 'mid heel', ['bright'], ['casual', 'business'], 400.0],
['shoes', 'low heel', ['dark'], ['business'], 150.0],
['shoes', 'flat', ['bright'], ['casual'], 0.0],
['shoes', 'boots', ['dark'], ['casual'], 500.0],
['neck', 'necklace', ['dark'], ['business', 'evening'], 150.0],
['neck', 'choker', ['bright'], ['sportswear', 'casual'], 0.0],
['neck', 'scarf', ['bright'], ['casual', 'evening'], 250.0],
['neck', 'tie', ['dark'], ['business'], 100.0],
['neck', 'bow tie', ['dark'], ['business', 'evening'], 100.0],
['handbag', 'backpack', ['bright'], ['sportswear'], 100.0],
['handbag', 'purse', ['bright'], ['business'], 600.0],
['handbag', 'clutch', ['dark'], ['evening'], 500.0],
['handbag', 'belt bag', ['dark'], ['casual'], 300.0],
['handbag', 'cross bag', ['dark'], ['business'], 0.0]]
import numpy as npy
import random
class GeneticAlgorithm:
data = npy.array(data)
def populationInitialisation(self, popSize):
initialpop = []
for i in range(popSize):
gene1 = random.randint(0, 10)
gene2 = random.randint(11, 21)
gene3 = random.randint(22, 32)
gene4 = random.randint(33, 43)
gene5 = random.randint(44, 55)
fitValue = self.FitnessCalculation([gene1, gene2, gene3, gene4, gene5])
individual = [gene1, gene2, gene3, gene4, gene5, fitValue]
initialpop.append(individual)
return initialpop
def populationSort(self, pop):
pop.sort(key=self.getFitnessValue, reverse=True)
def getFitnessValue(self, individual):
return individual[5]
def FitnessCalculation(self, individual):
fitVal1 = 0
fitVal2 = 0
fitVal3 = 0
sumPrice = 0
for i in individual:
if dress_code in data[i, 3]:
fitVal1 = fitVal1 + 1
if color in data[i, 2]:
fitVal2 = fitVal2 + 1
sumPrice = sumPrice + float(data[i, 4])
if price <= sumPrice:
fitVal3 = fitVal3 + 1
fitnessValue = (fitVal1*0.4 + fitVal2*0.2 + fitVal3*0.4)/5
return fitnessValue
def roulette_wheel_selection(self, pop, popSize):
#calculate the fitness of each chromosome
fitValues = []
i = 0
while i < popSize:
fitValues.append(pop[i][5])
i = i + 1
sumFitnesses = sum(fitValues)
#calculate the probability of selection of each chromosome
problist = []
prouviousProbability = 0
for i in range(popSize):
Pr = prouviousProbability + (fitValues[i] / sumFitnesses)
problist.append(Pr)
prouviousProbability = Pr
for i in range(popSize):
if random.random() <= problist[i]:
return i
def crossover(self, par1, par2):
child = []
start_gene = int(random.random() * len(par1) - 1)
for i in range(0, start_gene):
child.append(par1[i])
for i in range(start_gene, len(par1) - 1):
child.append(par2[i])
child.append(self.FitnessCalculation(child))
return child
def mutation(self, individual, m):
for gene in range(len(individual) - 1):
if (random.random() < m):
if gene == 0:
individual[0] = random.randint(0, 10)
if gene == 1:
individual[1] = random.randint(11, 20)
if gene == 2:
individual[2] = random.randint(21, 27)
if gene == 3:
individual[3] = random.randint(28, 32)
if gene == 4:
individual[4] = random.randint(33, 37)
individual[5] = self.FitnessCalculation(individual[0:5])
return individual
def replacment(self, child, population):
population.append(child)
self.populationSort(population)
population.pop(-1)
return population
if __name__ == '__main__':
dress_code = input("Enter the dress code")
color = input("Enter which color [light, dark]")
price = input("Enter your budhet [ SAR 0.0 – SAR ∞ ]")
popSize = 100
population = GeneticAlgorithm.populationInitialisation(popSize)
GeneticAlgorithm.populationSort(population)
plotgenerations = []
plotfitness = []
i = 0
for i in range(20000):
p1 = GeneticAlgorithm.roulette_wheel_selection(population, popSize)
p2 = GeneticAlgorithm.roulette_wheel_selection(population, popSize)
if random.random() < 0.75:
child = GeneticAlgorithm.crossover(population[p1], population[p2])
child = GeneticAlgorithm.mutation(child, 0.25)
GeneticAlgorithm.replacment(child, population)
plotgenerations.append(i)
plotfitness.append(population[0][5])
print("generation number: ", i, "Best individual: ", population[0][0:5], "Best individual: ", population[0][5])