-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathdata_preprocess_1.py
133 lines (122 loc) · 4.82 KB
/
data_preprocess_1.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
########Create data pair for validation or train set
########Read from original json file:=>Convert into qid,cid,q_context,c_context,a_start_character_level,a_length
import pickle
import json
import os
from nltk import StanfordTokenizer
from multiprocessing import Pool
import matplotlib.pyplot as plt
from matplotlib.pyplot import hist
import sys
from configargparse import ArgParser
HOME_PATH=os.path.dirname(__file__)
DATA_PATH=os.path.join(HOME_PATH,"data")
TOKENIZER_PATH=os.path.join(DATA_PATH,"tokenizer")
TOKENIZER_CORE_PATH=os.path.join(TOKENIZER_PATH,"stanford-corenlp-full-2017-06-09/stanford-corenlp-3.8.0.jar")
UTIL_PATH=os.path.join(HOME_PATH,"utility")
def create_pair(data_path):
data_file=open(data_path,"r")
data=json.load(data_file)["data"]
result=[]
cid=[]
c_count=0
qid=[]
c_str=[]
q_str=[]
a_s=[]
a_str=[]
for article in data:
for pa in article["paragraphs"]:
context=pa["context"]
context=context.lower()
cid.append(c_count)
for qa in pa["qas"]:
qid_=qa["id"]
question=qa["question"]
question=question.lower()
qid.append(qid_)
for answ in qa["answers"]:
answ_s=answ["answer_start"]
answ_str=answ["text"]
result.append((c_count,qid_,context,question,answ_s,answ_str))
c_count += 1
return result
def max_contextNquestion_length(data_wordlvl_path):
data=pickle.load(open(data_wordlvl_path,"rb"))
hist_length_c=[]
hist_length_q=[]
for cid,qid,tok_c,tok_q,ans_s,ans_e in data:
hist_length_c.append(len(tok_c))
hist_length_q.append(len(tok_q))
return hist_length_c,hist_length_q
if __name__=="__main__":
########Add argument list(num_worker)
parser=ArgParser()
parser.add_argument("-workers","--num_workers",default=1)
parser.add_argument("-tok_path","--tok_dir",default=TOKENIZER_CORE_PATH)
args=parser.parse_args()
workers=int(args.num_workers)
########Check tokenizer:
tokenizer=StanfordTokenizer(args.tok_dir)
train_data_path=os.path.join(DATA_PATH,"SQuAD-v1.1-train.json")
known_list_path=os.path.join(UTIL_PATH,"known_list")
train_data_pairs=create_pair(train_data_path)
TRAIN_DATA_PATH=os.path.join(DATA_PATH,"train")
train_save_file=open(os.path.join(TRAIN_DATA_PATH,"data_"),"wb")
#########Saving
print("Extracting train features in character level...")
pickle.dump(train_data_pairs,train_save_file)
train_save_file.close()
print("Saving in %s"%os.path.join(TRAIN_DATA_PATH,"data_"))
print("Done")
def func_(element):
cid, qid, c_str, q_str, answ_s, answ_str = element
tokenized_c = tokenizer.tokenize(c_str)
tokenized_q = tokenizer.tokenize(q_str)
sub_context = c_str[0:answ_s]
tokenized_sub_context = tokenizer.tokenize(sub_context)
answ_s_wordlvl = len(tokenized_sub_context)
tokenized_answ = tokenizer.tokenize(answ_str)
answ_e_wordlvl = answ_s_wordlvl + len(tokenized_answ)
print("s:%d \t e:%d"%(answ_s_wordlvl,answ_e_wordlvl))
print(tokenized_c[answ_s_wordlvl:answ_e_wordlvl])
return cid, qid, tokenized_c, tokenized_q, answ_s_wordlvl, answ_e_wordlvl
print()
###########To wordlevel
print("Creating train data word-level...")
train_save_file=open(os.path.join(TRAIN_DATA_PATH,"data_"),"rb")
data=pickle.load(train_save_file)
pool=Pool(workers)
result_map=pool.map(func_,data)
pool.close()
pool.join()
train_word_lvl_file=open(os.path.join(TRAIN_DATA_PATH,"data_word_lvl"),"wb")
pickle.dump(result_map,file=train_word_lvl_file)
train_word_lvl_file.close()
print("Saving in %s"%os.path.join(TRAIN_DATA_PATH,"data_word_lvl"))
print("Done")
print()
#################Validation
print("Extracting validation's features in character level...")
val_data_path=os.path.join(DATA_PATH,"SQuAD-v1.1-dev.json")
val_pairs=create_pair(val_data_path)
VAL_DATA_PATH=os.path.join(DATA_PATH,"val")
val_save_file=open(os.path.join(VAL_DATA_PATH,"val_data_"),"wb")
pickle.dump(val_pairs,val_save_file)
val_save_file.close()
print("Saving in %s"%os.path.join(VAL_DATA_PATH,"val_data_"))
print("Done")
print()
#########Word level
print("Creating train data word-level...")
val_save_file = open(os.path.join(VAL_DATA_PATH, "val_data_"), "rb")
val_data=pickle.load(val_save_file)
pool=Pool(workers)
result_map=pool.map(func_,val_data)
pool.close()
pool.join()
val_data_word_lvl_file=open(os.path.join(VAL_DATA_PATH,"val_data_word_lvl"),"wb")
pickle.dump(result_map,val_data_word_lvl_file)
val_data_word_lvl_file.close()
print("Saving in %s"%os.path.join(VAL_DATA_PATH,"val_data_word_lvl"))
print("Done")