-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathlandmark_utils.py
362 lines (311 loc) · 14 KB
/
landmark_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
from typing import List
import json
import re
import numpy as np
from scipy.spatial.transform import Rotation as sciRot
LANDMARKS_ORDER = ['10th Rib Midspine',
'Cervicale',
'Crotch',
'Lt. 10th Rib',
'Lt. ASIS',
'Lt. Acromion',
'Lt. Axilla, Ant.',
'Lt. Axilla, Post.',
'Lt. Calcaneous, Post.',
'Lt. Clavicale',
'Lt. Dactylion',
'Lt. Digit II',
'Lt. Femoral Lateral Epicn',
'Lt. Femoral Medial Epicn',
'Lt. Gonion',
'Lt. Humeral Lateral Epicn',
'Lt. Humeral Medial Epicn',
'Lt. Iliocristale',
'Lt. Infraorbitale',
'Lt. Knee Crease',
'Lt. Lateral Malleolus',
'Lt. Medial Malleolus',
'Lt. Metacarpal Phal. II',
'Lt. Metacarpal Phal. V',
'Lt. Metatarsal Phal. I',
'Lt. Metatarsal Phal. V',
'Lt. Olecranon',
'Lt. PSIS',
'Lt. Radial Styloid',
'Lt. Radiale',
'Lt. Sphyrion',
'Lt. Thelion/Bustpoint',
'Lt. Tragion',
'Lt. Trochanterion',
'Lt. Ulnar Styloid',
'Nuchale',
'Rt. 10th Rib',
'Rt. ASIS',
'Rt. Acromion',
'Rt. Axilla, Ant.',
'Rt. Axilla, Post.',
'Rt. Calcaneous, Post.',
'Rt. Clavicale',
'Rt. Dactylion',
'Rt. Digit II',
'Rt. Femoral Lateral Epicn',
'Rt. Femoral Medial Epicn',
'Rt. Gonion',
'Rt. Humeral Lateral Epicn',
'Rt. Humeral Medial Epicn',
'Rt. Iliocristale',
'Rt. Infraorbitale',
'Rt. Knee Crease',
'Rt. Lateral Malleolus',
'Rt. Medial Malleolus',
'Rt. Metacarpal Phal. II',
'Rt. Metacarpal Phal. V',
'Rt. Metatarsal Phal. I',
'Rt. Metatarsal Phal. V',
'Rt. Olecranon',
'Rt. PSIS',
'Rt. Radial Styloid',
'Rt. Radiale',
'Rt. Sphyrion',
'Rt. Thelion/Bustpoint',
'Rt. Tragion',
'Rt. Trochanterion',
'Rt. Ulnar Styloid',
'Sellion',
'Substernale',
'Supramenton',
'Suprasternale',
'Waist, Preferred, Post.']
NORMALIZING_LANDMARK = "Substernale"
NORMALIZING_LANDMARK_INDEX = LANDMARKS_ORDER.index("Substernale")
CAESAR_LANDMARK_MAPPING = {
'10th Rib Midspine': '10th Rib Midspine',
'AUX LAND': 'AUX LAND',
'Butt Block': 'Butt Block',
'Cervical': 'Cervicale', # FIXED
'Cervicale': 'Cervicale',
'Crotch': 'Crotch',
'Lt. 10th Rib': 'Lt. 10th Rib',
'Lt. ASIS': 'Lt. ASIS',
'Lt. Acromio': 'Lt. Acromion', # FIXED
'Lt. Acromion': 'Lt. Acromion',
'Lt. Axilla, An': 'Lt. Axilla, Ant.', # FIXED
'Lt. Axilla, Ant': 'Lt. Axilla, Ant.', # FIXED
'Lt. Axilla, Post': 'Lt. Axilla, Post.', # FIXED
'Lt. Axilla, Post.': 'Lt. Axilla, Post.',
'Lt. Calcaneous, Post.': 'Lt. Calcaneous, Post.',
'Lt. Clavicale': 'Lt. Clavicale',
'Lt. Dactylion': 'Lt. Dactylion',
'Lt. Digit II': 'Lt. Digit II',
'Lt. Femoral Lateral Epicn': 'Lt. Femoral Lateral Epicn',
'Lt. Femoral Lateral Epicn ': 'Lt. Femoral Lateral Epicn', # FIXED
'Lt. Femoral Medial Epicn': 'Lt. Femoral Medial Epicn',
'Lt. Gonion': 'Lt. Gonion',
'Lt. Humeral Lateral Epicn': 'Lt. Humeral Lateral Epicn',
'Lt. Humeral Medial Epicn': 'Lt. Humeral Medial Epicn',
'Lt. Iliocristale': 'Lt. Iliocristale',
'Lt. Infraorbitale': 'Lt. Infraorbitale',
'Lt. Knee Crease': 'Lt. Knee Crease',
'Lt. Lateral Malleolus': 'Lt. Lateral Malleolus',
'Lt. Medial Malleolu': 'Lt. Medial Malleolus', # FIXED
'Lt. Medial Malleolus': 'Lt. Medial Malleolus',
'Lt. Metacarpal-Phal. II': 'Lt. Metacarpal Phal. II', # FIXED
'Lt. Metacarpal-Phal. V': 'Lt. Metacarpal Phal. V', # FIXED
'Lt. Metatarsal-Phal. I': 'Lt. Metatarsal Phal. I', # FIXED
'Lt. Metatarsal-Phal. V': 'Lt. Metatarsal Phal. V', # FIXED
'Lt. Olecranon': 'Lt. Olecranon',
'Lt. PSIS': 'Lt. PSIS',
'Lt. Radial Styloid': 'Lt. Radial Styloid',
'Lt. Radiale': 'Lt. Radiale',
'Lt. Sphyrio': 'Lt. Sphyrion', # FIXED
'Lt. Sphyrion': 'Lt. Sphyrion',
'Lt. Thelion/Bustpoin': 'Lt. Thelion/Bustpoint', # FIXED
'Lt. Thelion/Bustpoint': 'Lt. Thelion/Bustpoint',
'Lt. Tragion': 'Lt. Tragion',
'Lt. Trochanterion': 'Lt. Trochanterion',
'Lt. Ulnar Styloid': 'Lt. Ulnar Styloid',
'Nuchale': 'Nuchale',
'Rt. 10th Rib': 'Rt. 10th Rib',
'Rt. ASIS': 'Rt. ASIS',
'Rt. Acromio': 'Rt. Acromion', # FIXED
'Rt. Acromion': 'Rt. Acromion',
'Rt. Axilla, An': 'Rt. Axilla, Ant.', # FIXED
'Rt. Axilla, Ant': 'Rt. Axilla, Ant.', # FIXED
'Rt. Axilla, Post': 'Rt. Axilla, Post.', # FIXED
'Rt. Axilla, Post.': 'Rt. Axilla, Post.',
'Rt. Calcaneous, Post.': 'Rt. Calcaneous, Post.',
'Rt. Clavicale': 'Rt. Clavicale',
'Rt. Dactylion': 'Rt. Dactylion',
'Rt. Digit II': 'Rt. Digit II',
'Rt. Femoral Lateral Epicn': 'Rt. Femoral Lateral Epicn',
'Rt. Femoral Lateral Epicn ': 'Rt. Femoral Lateral Epicn', # FIXED
'Rt. Femoral Medial Epic': 'Rt. Femoral Medial Epicn', # FIXED
'Rt. Femoral Medial Epicn': 'Rt. Femoral Medial Epicn',
'Rt. Gonion': 'Rt. Gonion',
'Rt. Humeral Lateral Epicn': 'Rt. Humeral Lateral Epicn',
'Rt. Humeral Medial Epicn': 'Rt. Humeral Medial Epicn',
'Rt. Iliocristale': 'Rt. Iliocristale',
'Rt. Infraorbitale': 'Rt. Infraorbitale',
'Rt. Knee Creas': 'Rt. Knee Crease', # FIXED
'Rt. Knee Crease': 'Rt. Knee Crease',
'Rt. Lateral Malleolus': 'Rt. Lateral Malleolus',
'Rt. Medial Malleolu': 'Rt. Medial Malleolus', # FIXED
'Rt. Medial Malleolus': 'Rt. Medial Malleolus',
'Rt. Metacarpal Phal. II': 'Rt. Metacarpal Phal. II',
'Rt. Metacarpal-Phal. V': 'Rt. Metacarpal Phal. V', # FIXED
'Rt. Metatarsal-Phal. I': 'Rt. Metatarsal Phal. I', # FIXED
'Rt. Metatarsal-Phal. V': 'Rt. Metatarsal Phal. V', # FIXED
'Rt. Olecranon': 'Rt. Olecranon',
'Rt. PSIS': 'Rt. PSIS',
'Rt. Radial Styloid': 'Rt. Radial Styloid',
'Rt. Radiale': 'Rt. Radiale',
'Rt. Sphyrio': 'Rt. Sphyrion', # FIXED
'Rt. Sphyrion': 'Rt. Sphyrion',
'Rt. Thelion/Bustpoin': 'Rt. Thelion/Bustpoint', # FIXED
'Rt. Thelion/Bustpoint': 'Rt. Thelion/Bustpoint',
'Rt. Tragion': 'Rt. Tragion',
'Rt. Trochanterion': 'Rt. Trochanterion',
'Rt. Ulnar Styloid': 'Rt. Ulnar Styloid',
'Sellion': 'Sellion',
'Substernale': 'Substernale',
'Supramenton': 'Supramenton',
'Suprasternale': 'Suprasternale',
'Waist, Preferred, Post.': 'Waist, Preferred, Post.'
}
def parse_landmark_txt_coords_formatting(data: List[str]):
"""
Parse landamrk txt file with formatting
x y z landmark_name
:param data (List[str]) list of strings, each string
represents one line from the txt file
:return landmarks (dict) in formatting
{landmark_name: [x,y,z]}
"""
# get number of landmarks
N = len(data)
if data[-1] == "\n":
N -= 1
# define landmarks
landmarks = {}
for i in range(N):
splitted_line = data[i].split(" ")
x = float(splitted_line[0])
y = float(splitted_line[1])
z = float(splitted_line[2])
remaining_line = splitted_line[3:]
landmark_name = " ".join(remaining_line)
if landmark_name[-1:] == "\n":
landmark_name = landmark_name[:-1]
landmarks[landmark_name] = [x,y,z]
return landmarks
def process_caesar_landmarks(landmark_path: str, scale: float = 1000.0):
"""
Process landmarks from .lnd file - reading file from AUX to END flags.
:param landmark_path (str): path to landmark .lnd file
:param scale (float): scale of landmark coordinates
:return landmark_dict (dict): dictionary with landmark names as keys and
landmark coordinates as values
landmark_coords are (np.array): (1,3) array
of landmark coordinates
"""
landmark_coords = []
landmark_names = []
with open(landmark_path, 'r') as file:
do_read = False
for line in file:
# start reading file when encounter AUX flag
if line == "AUX =\n":
do_read = True
# skip to the next line
continue
# stop reading file when encounter END flag
if line == "END =\n":
do_read = False
if do_read:
# EXAMPLE OF LINE IN LANDMARKS
# 1 0 1 43.22 19.77 -38.43 522.00 Sellion
# where the coords should be
# 0.01977, -0.03843, 0.522
# this means that the last three floats before
# the name of the landmark are the coords
# find landmark coordinates
landmark_coordinate = re.findall(r"[-+]?\d+\.*\d*", line)
# print(line)
# print(landmark_coordinate)
x = float(landmark_coordinate[-3]) / scale
y = float(landmark_coordinate[-2]) / scale
z = float(landmark_coordinate[-1]) / scale
# find landmark name
# (?: ......)+ repeats the pattern inside the parenthesis
# \d* says it can be 0 or more digits in the beginning
# [a-zA-Z]+ says it needs to be one or more characters
# [.,/]* says it can be 0 or more symbols
# \s* says it can be 0 ore more spaces
# NOTE: this regex misses the case for landmarks with names
# AUX LAND 79 -- it parses it as AUX LAND -- which is ok for our purposes
landmark_name = re.findall(r" (?:\d*[a-zA-Z]+[-.,/]*\s*)+", line)
landmark_name = landmark_name[0][1:-1]
landmark_name_standardized = CAESAR_LANDMARK_MAPPING[landmark_name]
# * zero or more of the preceding character.
# + one or more of the preceding character.
# ? zero or one of the preceding character.
landmark_coords.append([x,y,z])
landmark_names.append(landmark_name_standardized)
landmark_coords = np.array(landmark_coords)
return dict(zip(landmark_names, landmark_coords))
def load_landmarks(path: str):
"""
Load landmarks from file and return the landmarks as
np array of dimension 73 x 3 which corresponds to
landmarks defined in in LANDMARKS_ORDER.
Landmark file is defined in the following format:
.txt extension with each line "x y z landmark_name"
.json extension with {landmark_name: [x,y,z]}
.lnd extension (as defined in CAESAR)
:param path: (str) of path to landmark file
:return landmarks: np.array of landmarks
with dim (K,3)
"""
ext = path.split(".")[-1]
supported_extensions = [".txt",".json",".lnd"]
if ext == "txt":
with open(path, 'r') as file:
data = file.readlines()
landmarks = parse_landmark_txt_coords_formatting(data)
elif ext == "json":
with open(path,"r") as f:
landmarks = json.load(f)
elif ext == "lnd":
print("Be aware that the .lnd extension assumes you are using the CAESAR dataset.")
landmarks = process_caesar_landmarks(path,1000)
else:
supported_extensions_str = ', '.join(supported_extensions)
msg = f"Landmark extensions supported: {supported_extensions_str}. Got .{ext}."
raise ValueError(msg)
return landmarks
def process_landmarks(landmarks, scale, normalize_viewpoint=False):
"""
Models expect np.array of dim (1,216) which correspond to 72 landmarks (72*3=216)
These are obtained by centering the 73 landmark coords on the NORMALIZING_LANDMARK
and then deleting the NORMALIZING_LANDMARK --> therefore obtaning 72 landmarks
Create numpy array from landmarks dict of 73 landmarks
:param landmarks (dict): {landmark_name: landmark_coordinates} where
landmark_name are the 73 landmarks from LANDMARKS_ORDER and
landmark_coordinates is a list of coords [x,y,z]
:param scale (int): scale landmarks to mm
:return processed_landmarks (np.array) dim (1,216)
"""
processed_landmarks = np.zeros((73,3))
for i,lm_name in enumerate(LANDMARKS_ORDER):
if lm_name in landmarks:
processed_landmarks[i,:] = landmarks[lm_name]
processed_landmarks = processed_landmarks - processed_landmarks[NORMALIZING_LANDMARK_INDEX,:]
processed_landmarks = np.delete(processed_landmarks, NORMALIZING_LANDMARK_INDEX, axis=0) # (72,3)
processed_landmarks = processed_landmarks * scale # to mm
if normalize_viewpoint:
demo_lm = np.load("data/demo_landmarks_processed.npy") # (72,3) in mm
# align viewpoints
rot = sciRot.align_vectors(demo_lm, processed_landmarks)
processed_landmarks = rot[0].apply(processed_landmarks)
processed_landmarks = processed_landmarks.reshape(1,-1) # (1,216)
return processed_landmarks