-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathKLDiv.lua
52 lines (39 loc) · 1.47 KB
/
KLDiv.lua
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
-- Based on JoinTable module
require 'torch'
require 'nn'
require 'cudnn'
require 'cunn'
require 'cephes'
local THNN = require 'nn.THNN'
local KLDiv, parent = torch.class('nn.KLDiv', 'nn.Criterion')
function KLDiv:__init(alpha0_q, alpha0_p)
parent.__init(self)
self.alpha0_q = alpha0_q
self.alpha0_p = alpha0_p
self.gradInput = {}
end
function lgamma(input)
local temp = (cephes.lgam(input:float())):type(input:type())
return temp:resizeAs(input)
end
function digamma(input)
local temp = (cephes.digamma(input:float())):type(input:type())
return temp:resizeAs(input)
end
function polygamma(input)
local temp = (cephes.polygamma(1, input:float())):type(input:type())
return temp:resizeAs(input)
end
function KLDiv:updateOutput(input_q, input_p)
self.output = lgamma(self.alpha0_q) - lgamma(self.alpha0_p) - torch.mean(torch.sum(lgamma(input_q), 2)) + torch.mean(torch.sum(lgamma(input_p), 2)) + (self.alpha0_p - self.alpha0_q)*digamma(self.alpha0_q) + torch.mean(torch.sum(torch.cmul(digamma(input_q), torch.csub(input_q, input_p)), 2))
return self.output
end
function KLDiv:updateGradInput(input_q, input_p)
self.gradInput[1] = self.gradInput[1] or input_q.new()
self.gradInput[1]:resizeAs(input_q)
self.gradInput[2] = self.gradInput[2] or input_p.new()
self.gradInput[2]:resizeAs(input_p)
self.gradInput[1] = torch.cmul(polygamma(input_q), torch.csub(input_q, input_p))
self.gradInput[2] = digamma(input_p) - digamma(input_q)
return self.gradInput
end