-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathDeleLinus_bikeshare_Analysis.py
278 lines (213 loc) · 9.59 KB
/
DeleLinus_bikeshare_Analysis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import time
import pandas as pd
import numpy as np
CITY_DATA = { 'chicago': 'chicago.csv',
'new york city': 'new_york_city.csv',
'washington': 'washington.csv' }
def get_filters():
"""
Asks user to specify a city, month, and day to analyze.
Returns:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
"""
print('Hello! Let\'s explore some US bikeshare data!')
# get user input for city (chicago, new york city, washington). HINT: Use a while loop to handle invalid inputs
city = ''
while city.lower() not in CITY_DATA:
city = input("Would you like to see data for Chicago, New York City, or Washington?\n").lower()
# get user input for month (all, january, february, ... , june)
while True:
filter_by = input('Would you like to filter the data by month, day or not at all? Type "none" for no time filter.\n')
if filter_by.lower().strip() == 'month':
month = input('Which month? January, February, March, April, May, or June? Please type out the full month name.\n')
day = None
break
# get user input for day of week (all, monday, tuesday, ... sunday)
elif filter_by.lower().strip() == 'day':
day = input('Which day? Monday, Tuesday, Wednesday, Thursday, Friday, Saturday, or Sunday? Please type out the full day name.\n')
month = None
break
elif filter_by.lower().strip() == 'none':
month = None
day = None
break
else:
print('make sure your inputs are valid!\n')
main()
print('-'*40)
return city, month, day
def load_data(city, month, day):
"""
Loads data for the specified city and filters by month and day if applicable.
Args:
(str) city - name of the city to analyze
(str) month - name of the month to filter by, or "all" to apply no month filter
(str) day - name of the day of week to filter by, or "all" to apply no day filter
Returns:
df - Pandas DataFrame containing city data filtered by month and day
"""
#load data
df = pd.read_csv(CITY_DATA[city])
#drop the unknown column that appears
df.drop(df.columns[df.columns.str.contains('unnamed', case=False)], axis=1,inplace=True)
#convert the Date to datetime data type
df['End Time'] = pd.to_datetime(df['End Time'])
df['Start Time'] = pd.to_datetime(df['Start Time'])
# extract month and day of week from Start Time to create new columns
df['Month'] = pd.DatetimeIndex(df['Start Time']).strftime('%B')
df['Day_Of_Week'] = pd.DatetimeIndex(df['Start Time']).strftime('%A')
# #check for duplicated values
# if df.duplicated().sum() > 0:
# #delete duplicated values
# df.drop_duplicates(inplace=True)
if month != None:
# filter by month to create the new dataframe
try:
df = df[df['Month'] == month.title()]
except:
print("You didn't enter a valid month name!\n")
main()
# filter by day of week if applicable
if day != None:
try:
# filter by day of week to create the new dataframe
df = df[df['Day_Of_Week'] == day.title()]
except:
print("You didn't enter a valid day of week!\n")
main()
if day == None and month == None:
try:
# filter by all
df = df
except:
pass
return df
def time_stats(df):
"""Displays statistics on the most frequent times of travel."""
print('\nCalculating The Most Frequent Times of Travel...\n')
start_time = time.time()
# display the most common month
try:
print("The most common month is {} with the count of {}.\n".format(df['Month'].value_counts().index[0],
df['Month'].value_counts().max()))
except:
pass
# display the most common day of week
try:
print("The most common day of week is {} with the count of {}.\n".format(df['Day_Of_Week'].value_counts().index[0],
df['Day_Of_Week'].value_counts().max()))
except:
pass
# display the most common start hour
try:
print("The most common start hour is {}H with the count of {}.\n".format((pd.DatetimeIndex(df['Start Time']).hour).value_counts().index[0],
(pd.DatetimeIndex(df['Start Time']).hour).value_counts().max()))
except:
pass
print("\nThis took %s seconds.\n" % (time.time() - start_time))
print('-'*40)
def station_stats(df):
"""Displays statistics on the most popular stations and trip."""
print('\nCalculating The Most Popular Stations and Trip...\n')
start_time = time.time()
# display most commonly used start station
try:
print("The most commonly used start station is {} with the count of {}.\n".format(df['Start Station'].value_counts().index[0],
df['Start Station'].value_counts().max()))
except:
pass
# display most commonly used end station
try:
print("The most commonly used end station is {} with the count of {}.\n".format(df['End Station'].value_counts().index[0],
df['End Station'].value_counts().max()))
except:
pass
# display most frequent combination of start station and end station trip
try:
print("The most frequent combination of start station and end station trip is {} with the count of {}.\n".format((df['Start Station']+" - "+df['End Station']).value_counts().index[0],
(df['Start Station']+" - "+df['End Station']).value_counts().max()))
except:
pass
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def trip_duration_stats(df):
"""Displays statistics on the total and average trip duration."""
print('\nCalculating Trip Duration...\n')
start_time = time.time()
# total travel time in seconds
total_travel_time = df['Trip Duration'].sum()
#travel time in days
days = total_travel_time // 86400
#remaining travel time in hours
hours = (total_travel_time % 86400) // 3600
#remaining travel time in minutes
minutes = ((total_travel_time % 86400) % 3600) // 60
#remaining travel time in seconds
seconds = (((total_travel_time % 86400) % 3600) % 60) // 1
print("The total travel time is {:.0f} days {:.0f} hours {:.0f} minutes {:.0f} seconds.\n".format(days,hours, minutes, seconds ))
# display mean travel time
mean_travel_time = df['Trip Duration'].sum()/len(df['Trip Duration'])
#travel time in days
days_mean = mean_travel_time // 86400
#remaining travel time in hours
hours_mean = (mean_travel_time % 86400) // 3600
#remaining travel time in minutes
minutes_mean = ((mean_travel_time % 86400) % 3600) // 60
#remaining travel time in seconds
seconds_mean = (((mean_travel_time % 86400) % 3600) % 60) // 1
print("The mean travel time is {:.0f} days {:.0f} hours {:.0f} minutes {:.0f} seconds.\n".format(days_mean,hours_mean, minutes_mean, seconds_mean ))
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def user_stats(df):
"""Displays statistics on bikeshare users."""
print('\nCalculating User Stats...\n')
start_time = time.time()
# Display counts of user types
try:
usertype_count = df['User Type'].value_counts().to_frame()
usertype_count.rename(columns={"User Type":"Count"}, inplace=True)
usertype_count.index.name = "User Type"
print(usertype_count)
except:
pass
# Display counts of gender
try:
gender_count = df['Gender'].value_counts().to_frame()
gender_count.rename(columns={"Gender":"Count"}, inplace=True)
gender_count.index.name = "Gender"
print("\n",gender_count)
except:
pass
# Display earliest, most recent, and most common year of birth
try:
print("The earliest year of birth is {:.0f}.\n".format(df['Birth Year'].min()))
print("The most recent year of birth is {:.0f}.\n".format(df['Birth Year'].max()))
print("The most common year of birth is {:.0f} with the count of {}.\n".format(df['Birth Year'].value_counts().index[0],
df['Birth Year'].value_counts().max()))
except:
pass
print("\nThis took %s seconds." % (time.time() - start_time))
print('-'*40)
def main():
while True:
city, month, day = get_filters()
df = load_data(city, month, day)
time_stats(df)
station_stats(df)
trip_duration_stats(df)
user_stats(df)
try:
view_data = input("would you like to view the first ten rows of the data? (yes/no)")
if view_data.lower() == "yes":
print(df.head(10))
else:
pass
except:
pass
restart = input('\nWould you like to restart? Enter yes or no.\n')
if restart.lower() != 'yes':
break
if __name__ == "__main__":
main()