-
Notifications
You must be signed in to change notification settings - Fork 69
/
Copy pathutils.py
39 lines (34 loc) · 1.39 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
# based on deepfakes sample project
# https://github.com/deepfakes/faceswap
import cv2
import numpy
import os
# returns a list of file paths of all images in a specific directory
def get_image_paths( directory ):
return [ x.path for x in os.scandir( directory ) if x.name.endswith(".jpg") or x.name.endswith(".png") ]
def load_images( image_paths, convert=None ):
iter_all_images = ( cv2.imread(fn) for fn in image_paths )
if convert:
iter_all_images = ( convert(img) for img in iter_all_images )
for i,image in enumerate( iter_all_images ):
if i == 0:
all_images = numpy.empty( ( len(image_paths), ) + image.shape, dtype=image.dtype )
all_images[i] = image
return all_images
def get_transpose_axes( n ):
if n % 2 == 0:
y_axes = list( range( 1, n-1, 2 ) )
x_axes = list( range( 0, n-1, 2 ) )
else:
y_axes = list( range( 0, n-1, 2 ) )
x_axes = list( range( 1, n-1, 2 ) )
return y_axes, x_axes, [n-1]
# stacks images on another, needed for preview during training
def stack_images( images ):
images_shape = numpy.array( images.shape )
new_axes = get_transpose_axes( len( images_shape ) )
new_shape = [ numpy.prod( images_shape[x] ) for x in new_axes ]
return numpy.transpose(
images,
axes = numpy.concatenate( new_axes )
).reshape( new_shape )