-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathmain.py
261 lines (227 loc) · 12 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import time
import csv
from math import exp
inputFile = 'data/raw.csv'
outputFile = 'data/data.csv'
class rsxValues():
def __init__(self,v4_,f90_,f88,f8,f28,f30,f38,f40,f48,f50,f58,f60,f68,f70,f78,f80):
self.v4_ = v4_
self.f90_ = f90_
self.f88 = f88
self.f8 = f8
self.f28 = f28
self.f30 = f30
self.f38 = f38
self.f40 = f40
self.f48 = f48
self.f50 = f50
self.f58 = f58
self.f60 = f60
self.f68 = f68
self.f70 = f70
self.f78 = f78
self.f80 = f80
def values(self):
values = [self.v4_,self.f90_,self.f88,self.f8,self.f28,self.f30,self.f38,self.f40,self.f48,self.f50,self.f58,self.f60,self.f68,self.f70,self.f78,self.f80]
return(values)
def getRSX(source,prevRSX):
length = 14
f90_ = 0.0
f88 = 0.0
if (prevRSX.f90_ == 0.0):
f90_ = 1.0
elif (prevRSX.f88 <= prevRSX.f90_):
f90_ = prevRSX.f88 + 1
else:
f90_ = prevRSX.f90_ + 1
if ((prevRSX.f90_ == 0.0) and (length-1 >= 5)):
f88 = length - 1.0
else:
f88 = 5.0
f8 = 100.0*(source)
f18 = 3.0 / (length + 2.0)
f20 = 1.0 - f18
f10 = prevRSX.f8
v8 = f8 - f10
f28 = f20 * prevRSX.f28 + f18 * v8
f30 = f18 * f28 + f20 * prevRSX.f30
vC = f28 * 1.5 - f30 * 0.5
f38 = f20 * prevRSX.f38 + f18 * vC
f40 = f18 * f38 + f20 * prevRSX.f40
v10 = f38 * 1.5 - f40 * 0.5
f48 = f20 * prevRSX.f48 + f18 * v10
f50 = f18 * f48 + f20 * prevRSX.f50
v14 = f48 * 1.5 - f50 * 0.5
f58 = f20 * prevRSX.f58 + f18 * abs(v8)
f60 = f18 * f58 + f20 * prevRSX.f60
v18 = f58 * 1.5 - f60 * 0.5
f68 = f20 * prevRSX.f68 + f18 * v18
f70 = f18 * f68 + f20 * prevRSX.f70
v1C = f68 * 1.5 - f70 * 0.5
f78 = f20 * prevRSX.f78 + f18 * v1C
f80 = f18 * f78 + f20 * prevRSX.f80
v20 = f78 * 1.5 - f80 * 0.5
f0 = 0.0
if ((f88 >= f90_) and (f8 != f10)):
f0 = 1.0
else:
f0 = 0.0
f90 = 0.0
if ((f88 == f90_) and (f0 == 0.0)):
f90 = 0.0
else:
f90 = f90_
v4_ = 0.0
if ((f88 < f90) and (v20 > 0.0000000001)):
v4_ = (v14 / v20 + 1.0) * 50.0
else:
v4_ = 50.0
return(rsxValues(v4_,f90_,f88,f8,f28,f30,f38,f40,f48,f50,f58,f60,f68,f70,f78,f80))
class neuralValues():
def __init__(self,l1_2,l2_1,l2_5,l2_9,l2_13,l2_17,l2_21,l2_25,l2_29,l2_32,l3_0):
self.l1_2 = l1_2
self.l2_1 = l2_1
self.l2_5 = l2_5
self.l2_9 = l2_9
self.l2_13 = l2_13
self.l2_17 = l2_17
self.l2_21 = l2_21
self.l2_25 = l2_25
self.l2_29 = l2_29
self.l2_32 = l2_32
self.l3_0 = l3_0
def UporDown(self):
return self.l3_0 > 0
def values(self):
values = [self.l1_2, self.l2_1, self.l2_5, self.l2_9, self.l2_13, self.l2_17, self.l2_21, self.l2_25, self.l2_29, self.l2_32, self.l3_0]
return(values)
def getDiff(source, bigSource):
delta = source - bigSource
return (delta/bigSource)
def PineActivationFunctionTanh(v):
return((exp(v) - exp(-v))/(exp(v) + exp(-v)))
def getNeural(source, bigSource):
l0_0 = getDiff(source, bigSource)
l1_0 = PineActivationFunctionTanh(l0_0*0.8446488687)
l1_1 = PineActivationFunctionTanh(l0_0*-0.5674069006)
l1_2 = PineActivationFunctionTanh(l0_0*0.8676766445)
l1_3 = PineActivationFunctionTanh(l0_0*0.5200611473)
l1_4 = PineActivationFunctionTanh(l0_0*-0.2215499554)
l2_0 = PineActivationFunctionTanh(l1_0*0.3341657935 + l1_1*-2.0060003664 + l1_2*0.8606354375 + l1_3*0.9184846912 + l1_4*-0.8531172267)
l2_1 = PineActivationFunctionTanh(l1_0*-0.0394076437 + l1_1*-0.4720374911 + l1_2*0.2900968524 + l1_3*1.0653326022 + l1_4*0.3000188806)
l2_2 = PineActivationFunctionTanh(l1_0*-0.559307785 + l1_1*-0.9353655177 + l1_2*1.2133832962 + l1_3*0.1952686024 + l1_4*0.8552068166)
l2_3 = PineActivationFunctionTanh(l1_0*-0.4293220754 + l1_1*0.8484259409 + l1_2*-0.7154087313 + l1_3*0.1102971055 + l1_4*0.2279392724)
l2_4 = PineActivationFunctionTanh(l1_0*0.9111779155 + l1_1*0.2801691115 + l1_2*0.0039982713 + l1_3*-0.5648257117 + l1_4*0.3281705155)
l2_5 = PineActivationFunctionTanh(l1_0*-0.2963954503 + l1_1*0.4046532178 + l1_2*0.2460580977 + l1_3*0.6608675819 + l1_4*-0.8732022547)
l2_6 = PineActivationFunctionTanh(l1_0*0.8810811932 + l1_1*0.6903706878 + l1_2*-0.5953059103 + l1_3*-0.3084040686 + l1_4*-0.4038498853)
l2_7 = PineActivationFunctionTanh(l1_0*-0.5687101164 + l1_1*0.2736758588 + l1_2*-0.2217360382 + l1_3*0.8742950972 + l1_4*0.2997583987)
l2_8 = PineActivationFunctionTanh(l1_0*0.0708459913 + l1_1*0.8221730616 + l1_2*-0.7213265567 + l1_3*-0.3810462836 + l1_4*0.0503867753)
l2_9 = PineActivationFunctionTanh(l1_0*0.4880140595 + l1_1*0.9466627196 + l1_2*1.0163097961 + l1_3*-0.9500386514 + l1_4*-0.6341709382)
l2_10 = PineActivationFunctionTanh(l1_0*1.3402207103 + l1_1*0.0013395288 + l1_2*3.4813009133 + l1_3*-0.8636814677 + l1_4*41.3171047132)
l2_11 = PineActivationFunctionTanh(l1_0*1.2388217292 + l1_1*-0.6520886912 + l1_2*0.3508321737 + l1_3*0.6640560714 + l1_4*1.5936220597)
l2_12 = PineActivationFunctionTanh(l1_0*-0.1800525171 + l1_1*-0.2620989752 + l1_2*0.056675277 + l1_3*-0.5045395315 + l1_4*0.2732553554)
l2_13 = PineActivationFunctionTanh(l1_0*-0.7776331454 + l1_1*0.1895231137 + l1_2*0.5384918862 + l1_3*0.093711904 + l1_4*-0.3725627758)
l2_14 = PineActivationFunctionTanh(l1_0*-0.3181583022 + l1_1*0.2467979854 + l1_2*0.4341718676 + l1_3*-0.7277619935 + l1_4*0.1799381758)
l2_15 = PineActivationFunctionTanh(l1_0*-0.5558227731 + l1_1*0.3666152536 + l1_2*0.1538243225 + l1_3*-0.8915928174 + l1_4*-0.7659355684)
l2_16 = PineActivationFunctionTanh(l1_0*0.6111516061 + l1_1*-0.5459495224 + l1_2*-0.5724238425 + l1_3*-0.8553500765 + l1_4*-0.8696190472)
l2_17 = PineActivationFunctionTanh(l1_0*0.6843667454 + l1_1*0.408652181 + l1_2*-0.8830470112 + l1_3*-0.8602324935 + l1_4*0.1135462621)
l2_18 = PineActivationFunctionTanh(l1_0*-0.1569048216 + l1_1*-1.4643247888 + l1_2*0.5557152813 + l1_3*1.0482791924 + l1_4*1.4523116833)
l2_19 = PineActivationFunctionTanh(l1_0*0.5207514017 + l1_1*-0.2734444192 + l1_2*-0.3328660936 + l1_3*-0.7941515963 + l1_4*-0.3536051491)
l2_20 = PineActivationFunctionTanh(l1_0*-0.4097807954 + l1_1*0.3198619826 + l1_2*0.461681627 + l1_3*-0.1135575498 + l1_4*0.7103339851)
l2_21 = PineActivationFunctionTanh(l1_0*-0.8725014237 + l1_1*-1.0312091401 + l1_2*0.2267643037 + l1_3*-0.6814258121 + l1_4*0.7524828703)
l2_22 = PineActivationFunctionTanh(l1_0*-0.3986855003 + l1_1*0.4962556631 + l1_2*-0.7330224516 + l1_3*0.7355772164 + l1_4*0.3180141739)
l2_23 = PineActivationFunctionTanh(l1_0*-1.083080442 + l1_1*1.8752543187 + l1_2*0.3623326265 + l1_3*-0.348145191 + l1_4*0.1977935038)
l2_24 = PineActivationFunctionTanh(l1_0*-0.0291290625 + l1_1*0.0612906199 + l1_2*0.1219696687 + l1_3*-1.0273685429 + l1_4*0.0872219768)
l2_25 = PineActivationFunctionTanh(l1_0*0.931791094 + l1_1*-0.313753684 + l1_2*-0.3028724837 + l1_3*0.7387076712 + l1_4*0.3806140391)
l2_26 = PineActivationFunctionTanh(l1_0*0.2630619402 + l1_1*-1.9827996702 + l1_2*-0.7741413496 + l1_3*0.1262957444 + l1_4*0.2248777886)
l2_27 = PineActivationFunctionTanh(l1_0*-0.2666322362 + l1_1*-1.124654664 + l1_2*0.7288282621 + l1_3*-0.1384289204 + l1_4*0.2395966188)
l2_28 = PineActivationFunctionTanh(l1_0*0.6611845175 + l1_1*0.0466048937 + l1_2*-0.1980999993 + l1_3*0.8152350927 + l1_4*0.0032723211)
l2_29 = PineActivationFunctionTanh(l1_0*-0.3150344751 + l1_1*0.1391754608 + l1_2*0.5462816249 + l1_3*-0.7952302364 + l1_4*-0.7520712378)
l2_30 = PineActivationFunctionTanh(l1_0*-0.0576916066 + l1_1*0.3678415302 + l1_2*0.6802537378 + l1_3*1.1437036331 + l1_4*-0.8637405666)
l2_31 = PineActivationFunctionTanh(l1_0*0.7016273068 + l1_1*0.3978601709 + l1_2*0.3157049654 + l1_3*-0.2528455662 + l1_4*-0.8614146703)
l2_32 = PineActivationFunctionTanh(l1_0*1.1741126834 + l1_1*-1.4046408959 + l1_2*1.2914477803 + l1_3*0.9904052964 + l1_4*-0.6980155826)
l3_0 = PineActivationFunctionTanh(l2_0*-0.1366382003 + l2_1*0.8161960822 + l2_2*-0.9458773183 + l2_3*0.4692969576 + l2_4*0.0126710629 + l2_5*-0.0403001012 + l2_6*-0.0116244898 + l2_7*-0.4874816289 + l2_8*-0.6392241448 + l2_9*-0.410338398 + l2_10*-0.1181027081 + l2_11*0.1075562037 + l2_12*-0.5948728252 + l2_13*0.5593677345 + l2_14*-0.3642935247 + l2_15*-0.2867603217 + l2_16*0.142250271 + l2_17*-0.0535698019 + l2_18*-0.034007685 + l2_19*-0.3594532426 + l2_20*0.2551095195 + l2_21*0.4214344983 + l2_22*0.8941621336 + l2_23*0.6283377368 + l2_24*-0.7138020667 + l2_25*-0.1426738249 + l2_26*0.172671223 + l2_27*0.0714824385 + l2_28*-0.3268182144 + l2_29*-0.0078989755 + l2_30*-0.2032828145 + l2_31*-0.0260631534 + l2_32*0.4918037012)
return(neuralValues(l1_2,l2_1,l2_5,l2_9,l2_13,l2_17,l2_21,l2_25,l2_29,l2_32,l3_0))
class fxData():
def __init__(self,time,open_,high,low,close):
self.time = time
self.open = open_
self.high = high
self.low = low
self.close = close
self.ohlc = (open_+high+low+close)/4
self.change = open_-close
def setRSX(self,rsxValues):
self.rsxValues = rsxValues
def setBigSource(self, bigSource):
self.bigSource = bigSource
def setNeural(self, neurals):
self.neurals = neurals
def setY(self, y):
self.y = y
def values(self):
list0 = [self.time, self.open, self.high, self.low, self.close, self.ohlc, self.change, self.bigSource]
list1 = self.rsxValues.values()
list2 = self.neurals.values()
list3 = [self.neurals.UporDown(), self.y]
return(list0 + list1 + list2 + list3)
def saveData(candleData):
with open(outputFile, 'a', newline='') as data_file:
entryWrite = csv.writer(data_file)
entryWrite.writerow(candleData.values())
def getMinute(rawTime):
return float(rawTime.split(':')[1])%5
currentData = []
def processCurrentCandle(candle):
if(getMinute(candle.time) == 0):
if(len(currentData) > 0):
o_ = currentData[0].open
h_ = 0
l_ = 0
c_ = currentData[len(currentData)-1].close
for i in currentData:
if i.high > h_:
h_ = i.high
if (i.low < l_ or l_==0):
l_ = i.low
candle.setBigSource((o_+h_+l_+c_)/4)
else:
candle.setBigSource(candle.ohlc)
else:
if(len(currentData) > 0):
candle.setBigSource(currentData[len(currentData)-1].ohlc)
else:
candle.setBigSource(candle.ohlc)
candle.setNeural(getNeural(candle.ohlc,candle.bigSource))
rsx = None
if(len(currentData)>0):
rsx = getRSX(candle.ohlc,currentData[len(currentData)-1].rsxValues)
else:
rsx = getRSX(candle.ohlc,rsxValues(0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0))
candle.setRSX(rsx)
if(len(currentData)==6):
result = currentData[1]
openValue = result.open
closeValue = candle.close
y = 0
if closeValue>openValue:
y = 1
elif closeValue<openValue:
y = 0
result.setY(y)
if(result.neurals.UporDown() != currentData[0].neurals.UporDown()):
saveData(result)
currentData.remove(currentData[0])
currentData.append(candle)
def processData():
print(time.time())
with open(inputFile) as csv_file:
csv_reader = csv.reader(csv_file, delimiter=',')
for row in csv_reader:
data = fxData(row[0],float(row[1]),float(row[2]),float(row[3]),float(row[4]))
processCurrentCandle(data)
print('time:',time.time())
with open(outputFile, 'a', newline='') as data_file:
entryWrite = csv.writer(data_file)
entryWrite.writerow(['time', 'open', 'high', 'low', 'close', 'ohlc', 'change','big_source', 'v4_', 'f90_', 'f88', 'f8','f28','f30','f38','f40','f48','f50','f58','f60','f68','f70','f78','f80','l1_2','l2_1','l2_5','l2_9','l2_13','l2_17','l2_21','l2_25','l2_29','l2_32','l3_0','signal', 'y'])
processData()