!python train.py --img 460 --batch 40 --epochs 10 --data /content/drive/MyDrive/Rose/Dataset/Dataset/data.yaml --cfg ./models/yolov5s.yaml --weights yolov5s.pt --name result
train: weights=yolov5s.pt, cfg=./models/yolov5s.yaml, data=/content/drive/MyDrive/Rose/Dataset/Dataset/data.yaml, hyp=data/hyps/hyp.scratch-low.yaml, epochs=10, batch_size=40, imgsz=460, rect=False, resume=False, nosave=False, noval=False, noautoanchor=False, noplots=False, evolve=None, bucket=, cache=None, image_weights=False, device=, multi_scale=False, single_cls=False, optimizer=SGD, sync_bn=False, workers=8, project=runs/train, name=result, exist_ok=False, quad=False, cos_lr=False, label_smoothing=0.0, patience=100, freeze=[0], save_period=-1, seed=0, local_rank=-1, entity=None, upload_dataset=False, bbox_interval=-1, artifact_alias=latest github: up to date with https://github.com/ultralytics/yolov5 ✅ requirements: /content/drive/MyDrive/Rose/requirements.txt not found, check failed. YOLOv5 🚀 v7.0-162-gc3e4e94 Python-3.10.11 torch-2.0.0+cu118 CPU
hyperparameters: lr0=0.01, lrf=0.01, momentum=0.937, weight_decay=0.0005, warmup_epochs=3.0, warmup_momentum=0.8, warmup_bias_lr=0.1, box=0.05, cls=0.5, cls_pw=1.0, obj=1.0, obj_pw=1.0, iou_t=0.2, anchor_t=4.0, fl_gamma=0.0, hsv_h=0.015, hsv_s=0.7, hsv_v=0.4, degrees=0.0, translate=0.1, scale=0.5, shear=0.0, perspective=0.0, flipud=0.0, fliplr=0.5, mosaic=1.0, mixup=0.0, copy_paste=0.0 ClearML: run 'pip install clearml' to automatically track, visualize and remotely train YOLOv5 🚀 in ClearML Comet: run 'pip install comet_ml' to automatically track and visualize YOLOv5 🚀 runs in Comet TensorBoard: Start with 'tensorboard --logdir runs/train', view at http://localhost:6006/ Overriding model.yaml nc=80 with nc=8
from n params module arguments
0 -1 1 3520 models.common.Conv [3, 32, 6, 2, 2]
1 -1 1 18560 models.common.Conv [32, 64, 3, 2]
2 -1 1 18816 models.common.C3 [64, 64, 1]
3 -1 1 73984 models.common.Conv [64, 128, 3, 2]
4 -1 2 115712 models.common.C3 [128, 128, 2]
5 -1 1 295424 models.common.Conv [128, 256, 3, 2]
6 -1 3 625152 models.common.C3 [256, 256, 3]
7 -1 1 1180672 models.common.Conv [256, 512, 3, 2]
8 -1 1 1182720 models.common.C3 [512, 512, 1]
9 -1 1 656896 models.common.SPPF [512, 512, 5]
10 -1 1 131584 models.common.Conv [512, 256, 1, 1]
11 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
12 [-1, 6] 1 0 models.common.Concat [1]
13 -1 1 361984 models.common.C3 [512, 256, 1, False]
14 -1 1 33024 models.common.Conv [256, 128, 1, 1]
15 -1 1 0 torch.nn.modules.upsampling.Upsample [None, 2, 'nearest']
16 [-1, 4] 1 0 models.common.Concat [1]
17 -1 1 90880 models.common.C3 [256, 128, 1, False]
18 -1 1 147712 models.common.Conv [128, 128, 3, 2]
19 [-1, 14] 1 0 models.common.Concat [1]
20 -1 1 296448 models.common.C3 [256, 256, 1, False]
21 -1 1 590336 models.common.Conv [256, 256, 3, 2]
22 [-1, 10] 1 0 models.common.Concat [1]
23 -1 1 1182720 models.common.C3 [512, 512, 1, False]
24 [17, 20, 23] 1 35061 models.yolo.Detect [8, [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]], [128, 256, 512]]
YOLOv5s summary: 214 layers, 7041205 parameters, 7041205 gradients, 16.0 GFLOPs
Transferred 342/349 items from yolov5s.pt
WARNING
AutoAnchor: 3.31 anchors/target, 1.000 Best Possible Recall (BPR). Current anchors are a good fit to dataset ✅ Plotting labels to runs/train/result/labels.jpg... Image sizes 480 train, 480 val Using 2 dataloader workers Logging results to runs/train/result Starting training for 10 epochs...
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
0/9 0G 0.1116 0.01821 0.06235 69 480: 0% 0/17 [02:29<?, ?it/s]WARNING ⚠️ TensorBoard graph visualization failure Sizes of tensors must match except in dimension 1. Expected size 30 but got size 29 for tensor number 1 in the list.
0/9 0G 0.1071 0.02038 0.0638 22 480: 100% 17/17 [14:27<00:00, 51.04s/it]
Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [01:13<00:00, 36.99s/it]
all 132 121 0.00301 0.766 0.0168 0.00394
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
1/9 0G 0.07277 0.02185 0.05991 17 480: 100% 17/17 [12:11<00:00, 43.03s/it]
Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [01:11<00:00, 35.87s/it]
all 132 121 0.00332 0.968 0.0412 0.0128
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
2/9 0G 0.0589 0.02051 0.05456 19 480: 100% 17/17 [12:12<00:00, 43.07s/it]
Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [01:09<00:00, 34.67s/it]
all 132 121 0.109 0.35 0.146 0.0575
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
3/9 0G 0.05018 0.01752 0.05136 15 480: 100% 17/17 [12:12<00:00, 43.11s/it]
Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [01:10<00:00, 35.19s/it]
all 132 121 0.0926 0.435 0.13 0.0684
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
4/9 0G 0.04824 0.01559 0.04843 13 480: 100% 17/17 [12:16<00:00, 43.33s/it]
Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [01:06<00:00, 33.31s/it]
all 132 121 0.198 0.17 0.136 0.0557
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
5/9 0G 0.04233 0.01407 0.04515 8 480: 100% 17/17 [12:17<00:00, 43.41s/it]
Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [01:07<00:00, 33.74s/it]
all 132 121 0.191 0.394 0.245 0.12
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
6/9 0G 0.04433 0.01333 0.04395 11 480: 100% 17/17 [12:10<00:00, 42.99s/it]
Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [01:09<00:00, 34.68s/it]
all 132 121 0.157 0.496 0.245 0.135
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
7/9 0G 0.03818 0.01367 0.04417 22 480: 100% 17/17 [12:10<00:00, 42.96s/it]
Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [01:06<00:00, 33.48s/it]
all 132 121 0.172 0.604 0.33 0.216
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
8/9 0G 0.03349 0.01245 0.0418 14 480: 100% 17/17 [12:18<00:00, 43.46s/it]
Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [01:07<00:00, 33.72s/it]
all 132 121 0.0302 0.61 0.121 0.0532
Epoch GPU_mem box_loss obj_loss cls_loss Instances Size
9/9 0G 0.03194 0.0127 0.04184 16 480: 100% 17/17 [12:21<00:00, 43.63s/it]
Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [01:07<00:00, 33.51s/it]
all 132 121 0.0317 0.929 0.204 0.107
10 epochs completed in 2.272 hours. Optimizer stripped from runs/train/result/weights/last.pt, 14.4MB Optimizer stripped from runs/train/result/weights/best.pt, 14.4MB
Validating runs/train/result/weights/best.pt... Fusing layers... YOLOv5s summary: 157 layers, 7031701 parameters, 0 gradients, 15.8 GFLOPs Class Images Instances P R mAP50 mAP50-95: 100% 2/2 [00:54<00:00, 27.40s/it] all 132 121 0.173 0.616 0.331 0.217 꼬깔콘고소한맛 132 22 0.107 0.273 0.16 0.104 농심매운새우깡 132 22 0.122 0.409 0.124 0.0774 콘초 132 22 0.152 0.545 0.312 0.242 농심바나나킥 132 22 0.343 0.909 0.438 0.282 포카칩오리지널 132 11 0.172 0.727 0.349 0.233 도도한나쵸미니미크림어니언맛 132 11 0.0866 0.448 0.108 0.0483 허니버터칩 132 11 0.225 1 0.824 0.533 Results saved to runs/train/result