forked from henke443/AI_Rubiks_Cube
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathscrambling.py
181 lines (140 loc) · 4.93 KB
/
scrambling.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# THIS IS NOT USED FOR AI, JUST A REMNANT OF SOME RANDOM THING I DID
from c2 import Cube
from itertools import groupby, permutations, product
import random
from scipy import stats
import numpy as np
import zlib
import matplotlib.pyplot as plt
entropy_after_n_iterations = 6
def all_equal(iterable):
g = groupby(iterable)
return next(g, True) and not next(g, False)
possible_moves = "U U' L L' B B' R R' F F' D D'".split(" ")
def gen_random_moves(n):
return " ".join(random.choices(possible_moves, k=n))
def entropy(labels, base=None):
value, counts = np.unique(labels, return_counts=True)
return stats.entropy(counts, base=base)
def gen_all_moves(k):
return list(product(possible_moves, repeat=k))
def find_slowest_repeating(all_moves):
best_scramble = ""
best_scramble_score = -1
res_all_score = []
res_all_moves = []
for moves in all_moves:
cube = Cube()
if type(moves) == str:
if moves.strip() == "":
continue
else:
moves = " ".join(moves)
for i in range(0, 2000):
cube.moves(moves)
all_is_equal = True
for j in range(0, 6):
if not all_equal([cube.get_color(x) for x in cube.layer(j)]):
all_is_equal = False
if all_is_equal:
res_all_score.append(i)
res_all_moves.append(moves)
if i >= best_scramble_score:
best_scramble = moves
best_scramble_score = i
print("Repeats after:", i)
print("Moves:", moves, "\n")
break
# print(i, "all_is_equal:", all_is_equal)
return {
"best": best_scramble,
"best_score": best_scramble_score,
"all_score": res_all_score,
"all_moves": res_all_moves
}
def find_highest_entropy(all_moves, after_n_iter):
best_scramble = ""
best_scramble_score = -1
worst_scramble = ""
worst_scramble_score = 100
res_all_moves = []
res_all_score = []
for moves in all_moves:
cube = Cube()
moves = " ".join(moves) if not type(moves) == "str" else moves
all_data = []
for i in range(0, after_n_iter):
cube.moves(moves)
all_is_equal = True
all_layers_data = []
for j in range(0, 6):
layer_data = [cube.get_color(x) for x in cube.layer(j)]
all_layers_data.extend(layer_data)
if not all_equal(layer_data):
all_is_equal = False
all_data.extend(all_layers_data)
if all_is_equal:
break
# print("all_data:", all_data)
all_data = list(zlib.compress(np.array(all_data)))
_entropy = len(all_data) # entropy(all_data)
res_all_score.append(_entropy)
res_all_moves.append(moves)
if _entropy >= best_scramble_score:
best_scramble = moves
best_scramble_score = _entropy
print("Entropy", _entropy)
print("Scramble:", moves, "\n")
if _entropy < worst_scramble_score:
worst_scramble_score = _entropy
worst_scramble = moves
print("Worst entropy:", _entropy)
print("Worst scramble:", moves, "\n")
return {
"best": best_scramble,
"best_score": best_scramble_score,
"worst": worst_scramble,
"worst_score": worst_scramble_score,
"all_score": res_all_score,
"all_moves": res_all_moves
}
repeating_res_moves = []
entropy_res_moves = []
entropy_res = []
repeating_res = []
avg_entropy_res = []
avg_repeating_res = []
print(find_slowest_repeating(["L U' D R' F"]))
samples = 1
for i in range(5, 6):
samples_entropy_res = []
samples_repeating_res = []
samples_avg_entropy_res = []
samples_avg_repeating_res = []
print("Generating moves...")
all_moves = [
gen_random_moves(i) for x in range(0, samples)
] if samples > 1 else gen_all_moves(i)
# print("All moves:", all_moves)
print("Number of moves:", len(all_moves))
_entropy_res = find_highest_entropy(all_moves, 20)
# print(_entropy_res)
print(find_slowest_repeating(
[_entropy_res["best"], _entropy_res["worst"]]))
_repeating_res = find_slowest_repeating(all_moves)
entropy_res_moves.append(_entropy_res["best"])
entropy_res.append(_entropy_res["best_score"])
avg_entropy_res.append(
sum(_entropy_res["all_score"])/len(_entropy_res["all_score"]))
repeating_res_moves.append(_repeating_res["best"])
repeating_res.append(_repeating_res["best_score"])
avg_repeating_res.append(
sum(_repeating_res["all_score"])/len(_repeating_res["all_score"]))
plt.plot(entropy_res)
plt.plot(avg_entropy_res)
plt.show()
plt.plot(repeating_res)
plt.plot(avg_repeating_res)
plt.show()
# print(_entropy_res["all_moves"][258])
# print(_repeating_res["all_moves"][258])