-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmy_debugger.py
354 lines (289 loc) · 13.2 KB
/
my_debugger.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
from ctypes import *
from my_debugger_defines import *
import sys
import time
kernel32 = windll.kernel32
class debugger():
def __init__(self):
self.h_process = None
self.pid = None
self.debugger_active = False
self.h_thread = None
self.context = None
self.exception = None
self.exception_address = None
self.breakpoints = {}
self.first_breakpoint = True
self.hardware_breakpoints = {}
# Determine and store the default page size for the system
system_info = SYSTEM_INFO()
kernel32.GetSystemInfo(byref(system_info))
self.page_size = system_info.dwPageSize
self.guarded_pages = []
self.memory_breakpoints = {}
def load(self, path_to_exe):
# dwCreation flag determines how to create the process
# set creation_flags = CREATE_NEW_CONSOLE
# if you want to see the calculator GUI
creation_flags = DEBUG_PROCESS
# instantiate the structs
startupinfo = STARTUPINFO()
process_information = PROCESS_INFORMATION()
# The following two options allow the started process to be shown
# as a separate window. This also illustrates how different
# settings in the STARTUPINFO struct can affect the debuggee.
startupinfo.dwFlags = 0x1
startupinfo.wShowWindow = 0x0
# We then initialize the cb variable in the STARTUPINFO struct
# which is just the size of the struct itself
startupinfo.cb = sizeof(startupinfo)
if(sys.version_info.major == 3):
success = kernel32.CreateProcessW(path_to_exe, None, None, None, None,
creation_flags, None, None,
byref(startupinfo),
byref(process_information))
else:
success = kernel32.CreateProcessA(path_to_exe, None, None, None, None,
creation_flags, None, None,
byref(startupinfo),
byref(process_information))
if(success):
print("[*] We have successfully launched the process!")
print("[*] The Process ID I have is: %d" %
process_information.dwProcessId)
self.pid = process_information.dwProcessId
self.h_process = self.open_process(process_information.dwProcessId)
self.debugger_active = True
else:
print("[*] Error with error code %d." % kernel32.GetLastError())
def open_process(self, pid):
# PROCESS_ALL_ACCESS = 0x0x001F0FFF
h_process = kernel32.OpenProcess(PROCESS_ALL_ACCESS, False, pid)
return h_process
def attach(self, pid):
self.h_process = self.open_process(pid)
# We attempt to attach to the process if this fails we exit the call
if kernel32.DebugActiveProcess(pid):
self.debugger_active = True
self.pid = int(pid)
else:
print("[*] Unable to attach to the process.")
def run(self):
# Now we have to poll the debuggee for debugging events
while self.debugger_active == True:
self.get_debug_event()
def detach(self):
if kernel32.DebugActiveProcessStop(self.pid):
print("[*] Finished debugging. Exiting...")
return True
else:
print("There was an error")
return False
def open_thread(self, thread_id):
h_thread = kernel32.OpenThread(THREAD_ALL_ACCESS, None, thread_id)
if h_thread is not None:
return h_thread
else:
print("[*] Could not obtain a valid thread handle.")
return False
def enumerate_threads(self):
thread_entry = THREADENTRY32()
thread_list = []
snapshot = kernel32.CreateToolhelp32Snapshot(
TH32CS_SNAPTHREAD, self.pid)
if snapshot is not None:
# You have to set the size of the struct or the call will fail
thread_entry.dwSize = sizeof(thread_entry)
success = kernel32.Thread32First(snapshot, byref(thread_entry))
while success:
if thread_entry.th32OwnerProcessID == self.pid:
thread_list.append(thread_entry.th32ThreadID)
success = kernel32.Thread32Next(snapshot, byref(thread_entry))
# No need to explain this call, it closes handles so that we don't leak them.
kernel32.CloseHandle(snapshot)
return thread_list
else:
return False
def get_thread_context(self, thread_id=None, h_thread=None):
context = CONTEXT()
context.ContextFlags = CONTEXT_FULL | CONTEXT_DEBUG_REGISTERS
# Obtain a handle to the thread
if h_thread is None:
self.h_thread = self.open_thread(thread_id)
if kernel32.GetThreadContext(self.h_thread, byref(context)):
return context
else:
return False
def get_debug_event(self):
debug_event = DEBUG_EVENT()
continue_status = DBG_CONTINUE
if kernel32.WaitForDebugEvent(byref(debug_event), INFINITE):
# Let's obtain the thread and context information
self.h_thread = self.open_thread(debug_event.dwThreadId)
self.context = self.get_thread_context(self.h_thread)
print("Event Code: %d Thread ID: %d" %
(debug_event.dwDebugEventCode, debug_event.dwThreadId))
# If the event code is an exception, we want to examine it further.
if debug_event.dwDebugEventCode == EXCEPTION_DEBUG_EVENT:
# Obtain the exception code
self.exception = debug_event.u.Exception.ExceptionRecord.ExceptionCode
self.exception_address = debug_event.u.Exception.ExceptionRecord.ExceptionAddress
if self.exception == EXCEPTION_ACCESS_VIOLATION:
print("Access Violation Detected.")
# If a breakpoint is detected, we call an internal handler.
elif self.exception == EXCEPTION_BREAKPOINT:
continue_status = self.exception_handler_breakpoint()
elif self.exception == EXCEPTION_GUARD_PAGE:
print("Guard Page Access Detected.")
elif self.exception == EXCEPTION_SINGLE_STEP:
print("Single Stepping.")
self.exception_handler_single_step()
kernel32.ContinueDebugEvent(
debug_event.dwProcessId, debug_event.dwThreadId, continue_status)
def exception_handler_breakpoint(self):
print("[*] Inside the breakpoint handler.")
print("Exception Address: 0x%08x" % self.exception_address)
return DBG_CONTINUE
def read_process_memory(self, address, length):
data = ""
read_buf = create_string_buffer(length)
count = c_ulong(0)
if not kernel32.ReadProcessMemory(self, h_process, address,
read_buf, length, byref(count)):
return False
else:
data += read_buf.raw
return data
def write_process_memory(self, address, data):
count = c_ulong(0)
length = len(data)
c_data = c_char_p(data[count.value:])
if not kernel32.WriteProcessMemory(self.h_process, address,
c_data, length, byref(count)):
return False
else:
return True
def bp_set(self, address):
if not address in self.breakpoints:
try:
# store the original byte
original_byte = self.read_process_memory(address, 1)
# write the IN3 opcode
self.write_process_memory(address, "\xCC")
# register the breakpoint in our internal list
self.breakpoints[address] = (address, original_byte)
except:
return False
return True
def func_resolve(self, dll, function):
handle = kernel32.GetModuleHandleA(dll)
address = kernel32.GetProcAddress(handle, function)
kernel32.CloseHandle(handle)
return address
def bp_set_hw(self, address, length, condition):
# Check for a valid length value
if length not in (1, 2, 4):
return False
else:
length -= 1
# Check for a valid condition
if condition not in (HW_ACCESS, HW_EXECUTE, HW_WRITE):
return False
# Check for available slots
if not 0 in self.hardware_breakpoints:
available = 0
elif not 1 in self.hardware_breakpoints:
available = 1
elif not 2 in self.hardware_breakpoints:
available = 2
elif not 3 in self.hardware_breakpoints:
available = 3
else:
return False
# We want to set the dbeug register in every thread
for thread_id in self.enumerate_threads():
context = self.get_thread_context(thread_id=thread_id)
# Enable the appropriate flag in the DR7 register to set the breakpoint
context.Dr7 |= 1 << (available * 2)
# Save the address of the breakpoint in the free register that we found
if available == 0:
context.Dr0 = address
elif available == 1:
context.Dr1 = address
elif available == 2:
context.Dr2 = address
elif available == 3:
context.Dr3 = address
# Set the breakpoint condition
context.Dr7 |= condition << ((available & 4) + 16)
# Set the length
context.Dr7 |= length << ((available * 4) + 18)
# Set thread context with the break set
h_thread = self.open_thread(thread_id)
kernel32.SetThreadContext(h_thread, byref(context))
# update the internal hardware breakpoint array at the used slot index.
self.hardware_breakpoints[available] = (address, length, condition)
return True
def exception_handler_single_step(self):
# Determine if this single step event occurred in reaction to a hardware breakpoint and grab the hit breakpoint.
# according to the Intel docs, we should be able to check for the BS flag in Dr6.
# But it appears that Windows isn't properly propagating that flag down to us.
if self.context.Dr6 & 0x1 and 0 in self.hardware_breakpoints:
slot = 0
elif self.context.Dr6 & 0x2 and 1 in self.hardware_breakpoints:
slot = 1
elif self.context.Dr6 & 0x4 and 2 in self.hardware_breakpoints:
slot = 2
elif self.context.Dr6 & 0x8 and 3 in self.hardware_breakpoints:
slot = 3
else:
# This wasn't an INT1 generated by a hw breakpoint
continue_status = DBG_EXCEPTION_NOT_HANDLED
# Now let's remove the breakpoint from the list
if self.bp_del_hw(slot):
continue_status = DBG_CONTINUE
print("[*] Hardware breakpoint removed")
return continue_status
def bp_del_hw(self, slot):
# Disable the breakpoint for all active threads
for thread_id in self.enumerate_threads():
context = self.get_thread_context(thread_id=thread_id)
# Reset the flags to remove the breakpoint
context.Dr7 &= ~(1 << (slot * 2))
# Zero out the address
if slot == 0:
context.Dr0 = 0x00000000
elif slot == 1:
context.Dr1 = 0x00000000
elif slot == 2:
context.Dr2 = 0x00000000
elif slot == 3:
context.Dr3 = 0x00000000
# Remove the condition flag
context.Dr7 &= ~(3 << ((slot * 4) + 18))
# Reset the thread's context with the breakpoint removed
h_thread = self.open_thread(thread_id)
kernel32.SetThreadContext(h_thread, byref(context))
# remove the breakpoint from the internal list
del self.hardware_breakpoints[slot]
return True
def bp_set_mem(self, address, size):
mbi = MEMORY_BASIC_INFORMATION()
# If our VirtualQueryEx() call doesn't return a full-sized
# MEMORY_BASIC_INFORMATION then return False
if kernel32.VirtualQueryEx(self.h_process, address, byref(mbi), sizeof(mbi)) < sizeof(mbi):
return False
current_page = mbi.BaseAddress
# We will set the permissions on all pages that are affected by our memory breakpoint
while current_page <= address + size:
# Add the page to the list; this will diferentiate our guarded pages from those that were set by the OS or the debuggee process
self.guarded_pages.append(current_page)
old_protection = c_ulong(0)
if not kernel32.VirtualQueryEx(self.h_process, current_page, size,
mbi.Protect | PAGE_GUARD, byref(old_protection)):
return False
# Increase out range by the size of the default system memory page size
current_page += self.page_size
# Add the memory breakpoint to our global list
self.memory_breakpoints[address] = (address, size, mbi)
return True