-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathir_metric.py
169 lines (148 loc) · 6.76 KB
/
ir_metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
import torch
import numpy as np
import numba as nb
from tqdm import tqdm
from torch.utils.data import DataLoader
import torch.nn.functional as F
from ir_model import BaseIRModel
from ir_dataset import NUSWideHashDataset, COCOHashDataset, Flickr25kHashDataset, IMAGENET1K_V1_test_transform
def argsort(x):
return np.argsort(x, kind="stable").astype(np.int32)
@nb.njit('int32[:,::1](int16[:,::1])', parallel=True)
def _argsort16(a):
b = np.empty(a.shape, dtype=np.int32)
for i in nb.prange(a.shape[0]):
b[i,:] = np.argsort(a[i,:]).astype(np.int32)
return b
@nb.njit('int32[:,::1](int8[:,::1])', parallel=True)
def _argsort8(a):
b = np.empty(a.shape, dtype=np.int32)
for i in nb.prange(a.shape[0]):
b[i,:] = np.argsort(a[i,:]).astype(np.int32)
return b
# dot for int16, int8, float16
@nb.njit(parallel=True)
def matrix_multiply(A, B):
n, m = A.shape
m2, p = B.shape
assert m == m2, "A's columns must match B's rows"
C = np.zeros((n, p), dtype=A.dtype)
for i in nb.prange(n):
for j in range(p):
for k in range(m):
C[i, j] += A[i, k] * B[k, j]
return C
def generate_code(
model:BaseIRModel,
db_dataloder: DataLoader,
query_dataloader: DataLoader,
is_code=True
):
db_binary_img = []
db_label = []
query_binary_img = []
query_label = []
with torch.no_grad():
for batch_dict in tqdm(query_dataloader):
img, label = batch_dict["image"], batch_dict["label"]
img = img.to('cuda:0')
_, h, _image_reps = model.get_code(img)
if is_code:
query_binary_img.append(torch.sign(_image_reps).cpu().numpy().astype(np.int16))
else:
query_binary_img.append(h.cpu().numpy().astype(np.int16))
query_label.append(label.numpy().astype(np.int8))
for batch_dict in tqdm(db_dataloder):
img, label = batch_dict["image"], batch_dict["label"]
img = img.to('cuda:0')
_, h, _image_reps = model.get_code(img)
if is_code:
db_binary_img.append(torch.sign(_image_reps).cpu().numpy().astype(np.int16))
else:
db_binary_img.append(h.cpu().numpy().astype(np.int16))
db_label.append(label.numpy().astype(np.int8))
db_binary_img = np.concatenate(db_binary_img, axis=0, dtype=np.int16)
db_label = np.concatenate(db_label, axis=0, dtype=np.int8)
query_binary_img = np.concatenate(query_binary_img, axis=0, dtype=np.int16)
query_label = np.concatenate(query_label, axis=0, dtype=np.int8)
return db_binary_img, db_label, query_binary_img, query_label
def ACG(inner_dot_neg, relevant_mask, agrsort_index=None, topk=None):
if agrsort_index is not None:
topkindex = agrsort_index[:, :topk]
else:
topkindex = _argsort16(inner_dot_neg)[:, :topk]
relevant_topk_mask = np.take_along_axis(relevant_mask, topkindex, axis=1)
return float(np.mean(relevant_topk_mask))
def map_topk(inner_dot_neg, relevant_mask, agrsort_index=None, topk=None):
AP = []
relevant_mask = (relevant_mask>0).astype(np.bool_)
if agrsort_index is not None:
topkindex = agrsort_index[:, :topk]
else:
topkindex = _argsort16(inner_dot_neg)[:, :topk]
# topkindex = np.argsort(inner_dot_neg, axis=1)[:, :topk].astype(np.int32)
relevant_topk_mask = np.take_along_axis(relevant_mask, topkindex, axis=1)
# relevant_topk_mask = relevant_mask[np.expand_dims(np.arange(topkindex.shape[0]), axis=-1), topkindex]
cumsum = np.cumsum(relevant_topk_mask, axis=1)
precision = cumsum / np.arange(1, topkindex.shape[1]+1)
for query in range(relevant_mask.shape[0]):
if np.sum(relevant_topk_mask[query]) == 0:
AP.append(np.float32(0))
# print("nothing")
else:
AP.append(np.sum(precision[query]*relevant_topk_mask[query]) / np.sum(relevant_topk_mask[query]))
return float(np.mean(AP))
def DCG(rel, dist, agrsort_index=None, topk=None):
'''
input: rel, N x M relevance matrix
dist, N x M distance matrix
topk, default all result
return: Discounted Cumulative Gain@topk sorted by distance
'''
if agrsort_index is not None:
rank_index = agrsort_index[:, :topk]
else:
# rank_index = np.array(Parallel(n_jobs=15, prefer='threads')(delayed(argsort)(dist[i]) for i in range(dist.shape[0])), dtype=np.int32)[:, :topk]
rank_index = _argsort8(dist)[:, :topk]
rel_rank = np.take_along_axis(rel, rank_index, axis=1)
return np.mean(np.sum(np.divide(np.power(2, rel_rank) - 1, np.log2(np.arange(rel_rank.shape[1], dtype=np.float32) + 2)), axis=1))
def NDCG(rel, dist, agrsort_index=None, idcg_index=None, topk=None):
dcg = DCG(rel, dist, agrsort_index=agrsort_index, topk=topk)
idcg = DCG(rel, -rel, agrsort_index=idcg_index, topk=topk)
if dcg == 0.0:
return 0.0
ndcg = dcg / idcg
return float(ndcg)
def map_test(model, args):
# print('computing map for retrieval...')
model.eval()
if args.dataset == 'coco':
query_dataset = COCOHashDataset(IMAGENET1K_V1_test_transform, 'query')
db_dataset = COCOHashDataset(IMAGENET1K_V1_test_transform, 'db')
elif args.dataset == 'flickr25k':
query_dataset = Flickr25kHashDataset(IMAGENET1K_V1_test_transform, 'query')
db_dataset = Flickr25kHashDataset(IMAGENET1K_V1_test_transform, 'db')
elif args.dataset == 'nuswide':
query_dataset = NUSWideHashDataset(IMAGENET1K_V1_test_transform, 'query')
db_dataset = NUSWideHashDataset(IMAGENET1K_V1_test_transform, 'db')
else:
raise NotImplementedError
query_dataloader = DataLoader(query_dataset, batch_size=128, shuffle=False, num_workers=16)
db_dataloader = DataLoader(db_dataset, batch_size=128, shuffle=False, num_workers=16)
db_binary_img, db_label, query_binary_img, query_label \
= generate_code(model, db_dataloader, query_dataloader, args.iscode)
inner_dot_neg_i2i = -matrix_multiply(query_binary_img, db_binary_img.T)
relevant_mask = matrix_multiply(query_label, db_label.T)
agrsort_index = _argsort16(inner_dot_neg_i2i)
idcg_agrsort_index = _argsort8(-relevant_mask)
# print("parallel computing done")
map = map_topk(inner_dot_neg_i2i, relevant_mask, agrsort_index, 1000)
ngcg = NDCG(relevant_mask, inner_dot_neg_i2i, agrsort_index, idcg_agrsort_index, 1000)
acg_1000 = ACG(inner_dot_neg_i2i, relevant_mask, agrsort_index, 1000)
acg_100 = ACG(inner_dot_neg_i2i, relevant_mask, agrsort_index, 100)
del inner_dot_neg_i2i
del relevant_mask
del agrsort_index
del idcg_agrsort_index
model.train()
return {'map': round(map*100, 2), 'ndcg': round(ngcg*100, 2), 'acg_1000': round(acg_1000, 3), 'acg_100': round(acg_100, 3)}