forked from uzh-rpg/rpg_public_dronet
-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcommon_flags.py
63 lines (54 loc) · 3.24 KB
/
common_flags.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
import gflags
FLAGS = gflags.FLAGS
# Input
gflags.DEFINE_integer('img_width', 340, 'Target Image Width')
gflags.DEFINE_integer('img_height', 255, 'Target Image Height')
gflags.DEFINE_string('img_mode', "grayscale", 'Load mode for images, either '
'rgb or grayscale')
# Training
gflags.DEFINE_integer('batch_size', 32, 'Batch size in training and evaluation')
gflags.DEFINE_integer('epochs', 100, 'Number of epochs for training')
gflags.DEFINE_integer('log_rate', 10, 'Logging rate for full model (epochs)')
gflags.DEFINE_integer('initial_epoch', 0, 'Initial epoch to start training')
gflags.DEFINE_integer('max_t_samples_per_dataset', None, 'Maximum amount of'
' training samples per individual dataset (subfolders inside the'
'root dataset dir)')
gflags.DEFINE_integer('max_v_samples_per_dataset', None, 'Maximum amount of'
' validation samples per individual dataset (subfolders inside the'
'root dataset dir)')
gflags.DEFINE_integer('nb_visualizations', None, 'Amount of graphically annotated'
'images to export (evaluation)')
gflags.DEFINE_bool('freeze_filters', False, 'Wether to freeze the convolution'
' filters during training')
# Files
gflags.DEFINE_string('experiment_rootdir', "./model", 'Folder '
' containing all the logs, model weights and results')
gflags.DEFINE_string('train_dir', "/theos_dataset/training", 'Folder containing'
' training experiments')
gflags.DEFINE_string('val_dir', "/theos_dataset/validation", 'Folder containing'
' validation experiments')
gflags.DEFINE_string('test_dir', "./testing", 'Folder containing'
' testing experiments')
# Model
gflags.DEFINE_bool('restore_model', False, 'Whether to restore a trained'
' model for training')
gflags.DEFINE_string('weights_fname', "model_weights.h5", '(Relative) '
'filename of model weights')
gflags.DEFINE_string('weights_fpath', "model_weights.h5", '(Absolute) '
'filename of model weights to transfer from')
gflags.DEFINE_bool('transfer_learning', False, 'Partially restore a trained'
'model\'s weights')
gflags.DEFINE_string('model_transfer_fname', "model_struct.json", '(Relative) '
'filename of model structure to use')
gflags.DEFINE_string('model_transfer_fpath', "model_struct.json", '(Absolute) '
'filename of model structure to transfer from')
gflags.DEFINE_string('json_model_fname', "model_struct.json",
'Model struct json serialization, filename')
gflags.DEFINE_integer('nb_windows', 25, 'Number of regions to segmentate the'
' gate location on the image')
# Testing / Visualizing
gflags.DEFINE_integer('successive_frames', 4, 'number of successive frames to'
' use for the prediction filter (backward and forward)')
gflags.DEFINE_integer('max_outliers', 3, 'number of successive frames to'
' use for the prediction filter')
gflags.DEFINE_bool('filter', False, 'use a median filter')