-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
262 lines (191 loc) · 9.74 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
import os
seed = int(os.environ['SEED'])
import random
if seed == -1:
seed = random.randint(0, 2**32)
random.seed(seed)
import numpy as np
np.random.seed(seed)
import torch
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.backends.cudnn.benchmark = False
import tempfile
dirname = os.path.join(tempfile._get_default_tempdir(),next(tempfile._get_candidate_names()))
os.makedirs(dirname,exist_ok=True)
os.environ['MIOPEN_USER_DB_PATH']=dirname
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
from torch.utils.data import DataLoader
from lib import transform,util
from lib.config import config
import argparse,time,math
from lib.logger import Logger
parser = argparse.ArgumentParser()
parser.add_argument("--config", required=True, type=str )
parser.add_argument("--load_args", required=True, type=util.str2bool )
parser.add_argument("--root", default="./dirs/data_storage", type=str )
parser.add_argument("--validation", default=25000, type=int )
parser.add_argument("--plot_umap", default=False, type=util.str2bool )
parser.add_argument("--run_name", default='', type=str )
parser.add_argument("--logmode", default='w', type=str )
parser.add_argument("--T", default=1, type=float )
parser.add_argument("--set_cenmode", default='super', type=str )
parser.add_argument("--gamma", default='-inf', type=float )
parser.add_argument("--beta", default='-inf', type=float )
parser.add_argument("--lr", default='-inf', type=float )
args = parser.parse_args()
conf = config.get_config(args.config)
if args.load_args:
conf = config.update_args(conf,args)
transform_fn = transform.transform(*conf["transform"])
logger = Logger(conf=conf,mode='w')
util.print_params_dict(conf,logger)
conf['beta'] = 10**float(conf['beta']) if float(conf['beta']) > -5 else 0
conf['gamma'] = 10**float(conf['gamma']) if float(conf['gamma']) > -5 else 0
conf['lr'] = 10**float(conf['lr']) if float(conf['lr']) > -5 else 0
if torch.cuda.is_available():
device = "cuda:"+str(os.environ.get('GPU','0'))
else:
device = "cpu"
l_train_dataset = conf["dataset"](args.root, "l_train_{}".format(conf['nlabels']))
u_train_dataset = conf["dataset"](args.root, "u_train_{}".format(conf['nlabels']))
val_dataset = conf["dataset"](args.root, "val_{}".format(conf['nlabels']))
test_dataset = conf["dataset"](args.root, "test_{}".format(conf['nlabels']))
clist= util.gen_color_list(num_c=conf['num_classes'])
class RandomSampler(torch.utils.data.Sampler):
""" sampling without replacement """
def __init__(self, num_data, num_sample):
iterations = num_sample // num_data + 1
self.indices = torch.cat([torch.randperm(num_data) for _ in range(iterations)]).tolist()[:num_sample]
def __iter__(self):
return iter(self.indices)
def __len__(self):
return len(self.indices)
if conf['beta']== 0 and conf['alg'] == 'supervised':
l_loader = DataLoader(
l_train_dataset, conf["batch_size"], drop_last=True,
sampler=RandomSampler(len(l_train_dataset), conf["iteration"] * conf["batch_size"])
)
else:
l_loader = DataLoader(
l_train_dataset, conf["batch_size"]//2, drop_last=True,
sampler=RandomSampler(len(l_train_dataset), conf["iteration"] * conf["batch_size"]//2)
)
u_loader = DataLoader(
u_train_dataset, conf["batch_size"]//2, drop_last=True,
sampler=RandomSampler(len(u_train_dataset), conf["iteration"] * conf["batch_size"]//2)
)
val_loader = DataLoader(val_dataset, conf["batch_size"], shuffle=False, drop_last=False)
test_loader = DataLoader(test_dataset, conf["batch_size"], shuffle=False, drop_last=False)
model = util.create_model(conf['model'],conf["num_classes"],transform_fn,device,conf['T'],set_cenmode=conf['set_cenmode'])
ema = util.EMA(model=model,decay=0.99)
ema.register()
optimizer = optim.Adam(model.parameters(), lr=conf['lr'])
trainable_paramters = sum([p.data.nelement() for p in model.parameters()])
if conf['alg'] == "VAT":
from lib.algs.vat import VAT
ssl_obj = VAT(conf["eps"],conf["xi"], 1)
elif conf['alg'] == "PL":
from lib.algs.pseudo_label import PL
ssl_obj = PL(conf["threashold"])
elif conf['alg'] == "MT":
from lib.algs.mean_teacher import MT
t_model = util.create_model(conf['model'],conf["num_classes"],transform_fn,device,conf['T'],set_cenmode=conf['set_cenmode'])
t_model.load_state_dict(model.state_dict())
ssl_obj = MT(t_model, conf["ema_factor"])
elif conf['alg'] == "PI":
from lib.algs.pimodel import PiModel
ssl_obj = PiModel()
elif conf['alg'] == "supervised":
pass
else:
raise ValueError("{} is unknown algorithm".format(conf['alg']))
from lib.algs.cm_loss import CM_loss
cm_obj = CM_loss(num_clusters=conf["num_classes"]).to(device)
iteration = 0
maximum_val_acc = 0
st = time.time()
logger.log_str('Global Seed set to : {}'.format(seed))
logger.log_str("model : {}".format(conf['model']))
logger.log_str("trainable parameters : {}".format(trainable_paramters))
logger.log_str("labeled data: {}, unlabeled data : {}, training data : {}".format(len(l_train_dataset), len(u_train_dataset), len(l_train_dataset)+len(u_train_dataset)))
logger.log_str("validation data: {}, test data : {}".format(len(val_dataset), len(test_dataset)))
for l_data, u_data in zip(l_loader, u_loader):
iteration += 1
l_input, l_target = l_data
l_input, l_target = l_input.to(device).float(), l_target.to(device).long()
u_input, dummy_target, _ = u_data
u_input, dummy_target = u_input.to(device).float(), dummy_target.to(device).long()
target = torch.cat([l_target, dummy_target], 0)
inputs = torch.cat([l_input, u_input], 0)
if conf['set_cenmode'] == 'super':
util.set_centroids(i=iteration,model=model,imgs=l_input,lbls=l_target)
elif conf['set_cenmode'] == 'psed_super':
p_input,p_target = util.filter_high_conf_psed(u_input,model,th=0.95)
util.set_centroids(i=iteration,model=model,imgs=torch.cat([l_input,p_input]),lbls=torch.cat([l_target,p_target]))
elif conf['set_cenmode'] == 'lcen':
pass
optimizer.zero_grad()
outputs = model(inputs)
#supervised_loss
cls_loss = F.cross_entropy(outputs[1], target, reduction="none", ignore_index=-1).mean()
#cm loss
cm_loss = cm_obj(outputs)
if conf['alg'] != "supervised":
# ramp up exp(-5(1 - t)^2)
ramp_ssl = math.exp(-5 * (1 - min(iteration/conf["warmup"], 1))**2)
ramp_cm = 1
coef_ssl = conf['gamma'] * ramp_ssl
coef_cm = conf['beta']*ramp_cm
unlabeled_mask = (target == -1).float()
ssl_loss =ssl_obj(inputs, outputs[1].detach(), model, unlabeled_mask)
wssl_loss = ssl_loss * coef_ssl
wcm_loss = cm_loss * coef_cm
else:
ramp_cm = 1
coef_ssl = 0
coef_cm = conf['beta']*ramp_cm
ssl_loss = torch.zeros(1).to(device)
wssl_loss = coef_ssl*ssl_loss
wcm_loss = cm_loss * coef_cm
loss = cls_loss + wssl_loss + wcm_loss
loss.backward()
optimizer.step()
ema.update()
if conf['alg'] == "MT" or conf['alg'] == "ICT":
# parameter update with exponential moving average
ssl_obj.moving_average(model.parameters())
if iteration == 1 or (iteration % 5000) == 0:
logger.log_scalars(data_dict={
'train/cls_loss' :cls_loss.item() ,
'train/CM_loss' :cm_loss.item(),
'train/WCM_loss' :wcm_loss.item(),
'train/cm_coef' :coef_cm,
'train/lr' :optimizer.param_groups[0]["lr"],
'train/loss': loss.item(),
'train/ssl_coef' :coef_ssl,
'train/WSSL_loss' :wssl_loss.item() ,
'train/SSL_loss' :ssl_loss.item()
},it=iteration)
# validation and test
if iteration == 1 or (iteration % args.validation) == 0 or (iteration == conf["iteration"]):
acc,ema_acc,cert = util.evaluate(loader=val_loader,model=model,ema=ema,device=device)
test_acc,test_ema_acc,testcert = util.evaluate(loader=test_loader,model=model,ema=ema,device=device)
logger.log_scalars(data_dict={'test/val_acc':acc,'test/ema_val_acc':ema_acc,'test/val_cert':cert},it=iteration)
logger.log_scalars(data_dict={'test/all_test_acc':test_acc,'test/all_ema_test_acc':test_ema_acc,'test/test_cert':testcert},it=iteration)
if maximum_val_acc < acc:
maximum_val_acc = acc
logger.log_scalars(data_dict={'test/test_acc':test_acc},it=iteration)
logger.log_scalars(data_dict={'test/ema_test_acc':test_ema_acc},it=iteration)
if args.plot_umap:
fig = util.get_UMAP_fig(loader=test_loader,model=model,device=device,colorlist=clist)
logger.log_fig(fig_dict={'plot/umap':fig},it=iteration)
rem_hrs = util.remain_hrs(p=iteration/conf["iteration"],st=st)
logger.log_scalars(data_dict={'train/remain_hrs':rem_hrs},it=iteration)
if iteration == 1 or (iteration % 5000) == 0:
logger.print(it=iteration)
# lr decay
if iteration == conf["lr_decay_iter"]:
optimizer.param_groups[0]["lr"] *= conf["lr_decay_factor"]