-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathadv_test.py
84 lines (74 loc) · 3 KB
/
adv_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from tqdm import tqdm
from datasets.tpp_loader import *
from models.hist_encoders.lstm import LSTMEnc
from models.tpp_warper import TPPWarper
from models.embeddings import TrigonoTimeEmbedding, TypeEmbedding, PositionEmbedding
from models.hist_encoders import LSTMEnc
from models.prob_decoders.gan_modules import *
from trainers import AdvTrainer
SEED = 2020
def SetSeed(seed):
"""function used to set a random seed
Arguments:
seed {int} -- seed number, will set to torch and numpy
"""
import torch
import numpy
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
numpy.random.seed(seed)
if __name__ =='__main__':
device = torch.device('cuda:{}'.format(0))
SetSeed(SEED)
embed_size = 32
layer_num = 2
batch_size = 8
val_batch_size = 4
# load data
dataset_dir = './data/synthetic_n5_c0.2/'
data, event_type_num, seq_lengths, max_length, max_t, mean_log_dt, std_log_dt, max_dt \
= load_dataset(dataset_dir=dataset_dir,
device=device,
batch_size=batch_size,
val_batch_size=val_batch_size)
# setup model
time_embedding = TrigonoTimeEmbedding(embed_size=embed_size//2)
type_embedding = TypeEmbedding(event_type_num=event_type_num,
embed_size=embed_size//2,
padding_idx=event_type_num)
position_embedding = PositionEmbedding(embed_size=embed_size//2,
max_length=max_length)
hist_encoder = LSTMEnc(event_type_num=event_type_num,
input_size=embed_size,
embed_size=embed_size,
layer_num=layer_num)
prob_decoder = TransGenerator(embed_size=embed_size,
layer_num=layer_num,
event_type_num=event_type_num,
mean_log_inter_time=mean_log_dt,
std_log_inter_time=std_log_dt)
model_g = TPPWarper(time_embedding=time_embedding,
type_embedding=type_embedding,
position_embedding=position_embedding,
encoder=hist_encoder,
decoder=prob_decoder,
event_type_num=event_type_num,
mean_log_inter_time=mean_log_dt,
std_log_inter_time=std_log_dt)
model_d = WasDiscriminator(embed_size=embed_size,
layer_num=layer_num,
event_type_num=event_type_num)
# train
trainer = AdvTrainer(
data=data,
model_g=model_g,
model_d=model_d,
seq_length=seq_lengths,
max_t=max_t,
log_dir='experiments/',
experiment_name='att_gan_synthetic_n5_c0.2_{}'.format(SEED),
device=device
)
trainer.train()
trainer.final_test(n=1)